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Abstract. Knowledge-intensive methods that can altogether be char-
acterised as deductive web mining (DWM) already act as supporting
technology for building the semantic web. Reusable knowledge-level de-
scriptions may further ease the deployment of DWM tools. We devel-
oped a multi-dimensional, ontology-based framework, and a collection of
problem-solving methods, which enable to characterise DWM applica-
tions at an abstract level. We show that the heterogeneity and unbound-
edness of the web demands for some modifications of the problem-solving
method paradigm used in the context of traditional artificial intelligence.

1 Introduction

The short history of knowledge modelling is usually viewed as consisting of three
periods: first, with prevalent problem-solving modelling and stress on traditional
AT applications (from the beginning of 80s to mid 90s), second, with growing
interest in domain ontologies and expansion to more mundane computing en-
vironments (second half of 90s), and third, in which ontologies (and to lower
degree, problem-solving models) are most often built and used in connection
with the semantic web initiative (from about 2000). While the initial concept of
semantic web assumed manual creation of knowledge annotations, most recent
research efforts are aimed towards large-scale automated [8] or at least semi-
automated [10] annotation of websites. This makes the rich variety of website
data structures such as HTML trees or link topologies, as well as the processes
of their analysis, primordial knowledge modelling targets. Knowledge models
of website analysis applications and tools (in combination with ontologies of
the respective problem domains) could facilitate their reuse and reconfiguration
for novel tasks, and thus significantly contribute to the deployment of semantic
web. However, ‘universal’ problem-solving methods (PSMs), e.g. those from Com-
monKADS [17], are not easy to use for this purpose. This is mainly due to the
heterogeneity and unboundedness of the web space, which acts as ‘case data’ for
knowledge-based reasoning. Instead, as starting point for our knowledge mod-
elling effort, we propose a multi-dimensional, ontology-based framework, which
enables to characterise apparently dissimilar website analysis applications at the
knowledge level. The framework is further enriched with a collection of more
specialised PSMs.



In section 2 we explain the notion of deductive web mining (DWM) and dis-
cuss its knowledge modelling challenges. In section 3 we briefly present the his-
tory of our own DWM project named Rainbow, as initial motivation for DWM
knowledge modelling. In section 4 we describe the four-dimensional (TODD)
model of DWM as main contribution of the paper. In section 5 we discuss the
applicability of traditional PSMs on typical DWM tasks, and attempt to for-
mulate a collection of PSMs custom-tailored for DWM. In section 6 we describe
several existing DWM applications using the TODD model. Section 7 surveys
some related projects, and section 8 wraps up the paper.

2 Deductive Web Mining and its Knowledge-Level View

To our knowledge, there has been no concise term that would overarch var-
ious methods aiming at automated analysis (or, semantic annotation) of the
web space. We therefore suggest a novel label, that of Deductive Web Mining
(DWM). Our use of adjective ‘deductive’ is only meant as contrast to inductive
web mining (i.e. Web Mining in the usual sense); it should thus not be rigor-
ously identified with deduction in formal logic'. It is inspired by the notion of
Deductive Text Mining introduced by Kodratoff [12] as synonym to Information
Extraction, and explained as ‘finding instances of a predefined pattern in a set of
texts’. Deductive Web Mining is however, in our interpretation, not just another
word for Web Information Extraction. While Information Extraction from the
web typically amounts to extraction (from another viewpoint, semantic annota-
tion) of texts embedded in web pages, our notion of DWM covers all activities
where pre-ezisting patterns are matched with web data, be they of textual, graph-
wise or, say, bitmap nature. DWM thus subsumes Web Information Extraction,
and differs from Inductive Web Mining, which aims at discovery of previously
unseen, frequent patterns in web data. This does not mean that the ‘pre-existing
patterns’ in DWM have necessarily been hand-crafted: inductive learning of pat-
terns (or analogous structures/models) is merely viewed as an activity separate
from DWM (‘reasoning’).

The knowledge engineering research on problem-solving modelling during the
90s was quite systematic, and it is likely to have covered most typical ways of
reasoning in knowledge-based applications, in a relatively domain-neutral fash-
ion. The aspect in which DWM reasoning might differ is thus merely related
to the nature of underlying data. Traditional PSMs typically deal with rather
compact objects with a restricted number of features. This holds not only for
‘System Analysis’ tasks (referring e.g. to the CommonKADS library [17]) such
as Diagnosis or Assessment, but also for ‘System Synthesis’ tasks, e.g. for input
components in Planning or Scheduling. If larger structures appear, it is typically
only as static roles (in KADS sense), and they are relatively homogeneous, such
as causal networks in Diagnosis. In contrast, the World-Wide Web is a single

! Web data structures are ‘symptoms’ of underlying ‘causes’ (intentions of website
designers), i.e. the reasoning in DWM is rather abductive, as in the medical domain.



but extremely large structure, consisting of an enormous number of heteroge-
neous and intertwined objects, such as pages, hyperlinks, HTML trees, blocks
of free text, URLs or bitmap images. There is no clear notion of object-feature
relation; instead, there are the (sometimes substitutable) notions of parthood
and adjacency linking pairs of objects. Inference targeted on a single object may
easily become infinite, and certainly comprises aspects of recursion (at the task-
subtask level). As we show in section 5, the recursive nature of DWM may even
question the strict dichotomy of (non-atomic) tasks and atomic inferences, im-
posed by KADS-style modelling.

3 Background: the Rainbow Project

The Rainbow? project represents a family of more-or-less independent web-
mining projects undertaken by the same research group®. Their unifying prin-
ciples are commitment to web-service (WSDL/SOAP) front-end and agreement
on shared upper-level ontology. Furthermore, for each application, the develop-
ers involved also agree on a domain and share the source of training/testing
data. Otherwise, the formal principles of analysis methods vary (from linguistic
through statistical to e.g. graph theory), and so does the representation of data,
also nicknamed as ‘web view’ (such as free text, HTML trees or link topology).
In this way, the natural complementarity and/or supplementarity of information
inferable from different types of web data can be exploited.

Three application areas have been attacked so far: recognition of web pornog-
raphy, extraction of information about companies and extraction of product
offers from bicycle catalogues. All applications can be characterised as DWM,
mostly complemented with inductive learning of patterns. Different pornography-
recognition services, specialised in image bitmap analysis, HTML structure anal-
ysis, link topology analysis, META tag analysis and URL analysis, have been
executed more-or-less standalone. Empirical tests however proved that the syn-
ergy of different methods significantly improves recognition accuracy [22]. Very
simple analysis of company information (at the level of single pages) was de-
signed to be executed and integrated via a web browser plug-in, which displayed
the structured list of extracted information in a side bar [19]. Finally, the ap-
plication specialised in bicycle offer extraction is currently being sewn together,
including (in addition to ‘core’ DWM tools)

— the full-text database engine AmphorA [13], storing web pages as XHTML
documents, in a native XML database, as source-data back-end,

— a simple control procedure (hard-coded in Java), calling individual DWM
tools, and integrating and saving the results,

2 Stands for ‘Reusable Architecture for INtelligent Brokering Of Web information
access’. Beyond the acronym (shared with a host of other research projects), the
name is motivated by the idea that multiple independent tools for analysis of web
data should synergistically ‘shed light’ on the web content, in a similar way as the
different colours of the rainbow join together to form the visible light.

3 Knowledge engineering group at the University of Economics, Prague.



— the RDF repository Sesame [4] for storing the results corresponding to a
‘bicycle-offer’ ontology (RDF Schema), and, finally,

— an (HTML+JSP) semantic query interface with pre-fabricated templates,
shielding the user from the underlying RDF query language* and enabling
a simple form of navigational retrieval [20].

Results of experiments carried out with various DWM tools within the Rain-
bow project were summarised in [19], while [18] refers about synergistic evalu-
ation of multiple tools in a ‘company-profile-extraction’ task. More information
can be found at the project homepage http://rainbow.vse.cz. In the rest of
the paper, we will use applications of Rainbow (beside other applications re-
ported in the literature) to illustrate our knowledge modelling concepts.

4 The TODD Framework for Deductive Web Mining

Our framework should enable to position any DWM tool or service within a four-
dimensional space. The dimensions of the space correspond to the following:

1. Abstract task accomplished by the tool. So far, we managed to characterise
any concrete DWM task as instance of either:

— Classification of a web object into one or more pre-defined classes.

— Retrieval of one or more web objects.

— Eaxtraction of desired information content from (within) a web object.
The Classification of an object takes as input its identifier and the list of
classes under consideration. It returns one or more classes. The Retrieval of
desired objects takes as input the (syntactic) type of object, and constraints
expressing its class membership as well as (part—of and adjacency) relations
to other objects®. It outputs the identifiers (addresses based on URIs, XPath
expressions and the like) of relevant objectsS. The Extraction task takes as
input the class of information to be extracted and the scope (i.e., an object)
within which the extraction should take place”. It outputs some (possibly
structured, and most often textual) content. In contrast to Retrieval, it does
not, provide the information about precise location from where the content
was extracted®.

4 We currently use SeRQL, as generic language of Sesame, mainly because of its sup-
port for optional path expressions — a useful feature when dealing with incomplete
information typically obtained via DWM.

® For example: “Retrieve (the XPath addresses of) those HTML tables from the given
website that are immediately preceded with a possible ‘Product Table Introduction
Phrase’ (containing e.g. the expression product*)”.

6 In the description of this as well as other tasks, we omit auxiliary information on out-
put, such as numerical measures of relevance or uncertainty. These are also typically
output by DWM applications, including those developed in Rainbow.

7 For example: “Extract the occurrences of Company Name within the scope of given
Company Website”.

8 This is of course merely a knowledge-level view, which does not discourage relevant
DWM applications from remembering such information for technical purposes.



2. Type of object to be classified or retrieved®. The types, such as Document,
Hyperlink, or Phrase, represent an upper-level of abstraction of web objects;
any class considered in a DWM application should be subclass of such type.
This is facilitated by the fact that types correspond to classes of our Upper
Web Ontology (see below). The basic assumption is that the type of object
is always known, i.e. its assignment is not by itself subject of DWM.

3. Data type and/or representation'®, which can be e.g. full HTML code, plain
text (without tags), HTML parse tree (with/without textual content), hy-
perlink topology (as directed graph), frequencies of various sub-objects (or
their n-grams), image bitmaps or even URL address.

4. Domain to which the task is specific. In this paper, we will consider the
domains addressed by our as well as other analysed applications: company
sites with product information (incl. specialisations to bicycle offer and cast-
ing industry), pornography sites and sites of computer science departments
(plus the associated domain of bibliography).

We thus denote the framework as ‘task-object-data(type)-domain’ (TODD).
Its dimensions are to high degree independent, e.g. object type is only partially
correlated with data type. For example, a document may be classified based on
its HTML code, URL, META tag content or position in topology. Similarly, a
hyperlink can be classified based on its target URL or the HTML code of source
document (e.g. the menu structure containing the respective <a> tag). Clearly,
not all points of the 4-dimensional space are meaningful. For instance, a META
tag content cannot directly be used to classify a hyperlink, since the relation of
a META tag (being a special class of HTML document fragment) to a hyperlink
is only intermediated by a whole HTML document.

Table 1 demonstrates how the four-dimensional space of the TODD model
can be visualised, on the example of services implemented within the Rain-
bow applications mentioned in section 3. Rows correspond to object types and
columns to data/representation types. The fields/columns are filled with cor-
responding task acronyms (hyphen-)followed with domain acronyms. The task
acronyms are C for classification, R for retrieval and E for extraction (the last
always pertaining to a whole column). The domain acronyms are Ge for general
domain (universal web analysis), Po for pornography recognition, Co for general
company information extraction, and Bi for bicycle product information extrac-
tion. We omit potential columns that do not (yet) correspond to an implemented
Rainbow service, such as HTML tree data type.

The TODD framework by itself does not offer any added value to DWM
application design until augmented with appropriate ontologies. As example we
can take the Rainbow system of ontologies'!, which is indeed structured in corre-
spondence to the dimensions of the TODD framework. First, the three abstract

% Note that extraction aims at content and thus is not unambiguously associated with
a particular object.

10 We alternatively call this dimension ‘web view’, since the particular representation
of data corresponds to a certain view of the complex structure of the web.

1 Available in DAML4-OIL at http://rainbow.vse.cz.



Table 1. Rainbow services in the TODD space

Data type /|HTML | Plain Frequen-| URL Link META |Image

Object type |code text cy topol- tags bitmap
ogy
Document C-Po,
collection R-Co
Document C-Po C-Po, C-Po C-Po
C-Co
Document C-Po,
fragment
Hyperlink C-Co
Phrase C-Co
Image C-Ge,
C-Po
Ezxtraction E-Bi E-Co E-Co

tasks are modelled in a task ontology, in terms of their inputs and outputs.
Furthermore, the distinction of data types and domains suggests decomposi-
tion into four layers of ontologies. The upper two layers (Upper Web Ontol-
ogy and Partial Generic Web Models) are domain-independent and therefore
reusable by applications from all domains. The lower two layers, Partial Domain
Web Models and Domain Web Ontology add information specific to a given do-
main (e.g. product information or pornography). In addition, the top-most and
bottom-most layers, Upper Web Ontology and any Domain Web Ontology, cover
all data/representation types, while the middle ones consist each with multiple
(‘partial’) models, each of them specific for one data type such as HTML code
or link topology. The remaining dimension of the TODD model, object type, is
reflected in the internal structure of the Upper Web Ontology (see the UML
diagram at Fig. 1). The content of each of the four layers of the Rainbow sys-
tem of ontologies, as well as their mutual relations and an development process
are described in [15]. The ontologies are not yet used for automated reasoning;
they merely provide a basis for information exchange among the developers of
Rainbow tools and applications. Precisely defined object types and classes allow
for synergy of different tools in the reasoning phase, while precisely defined data
type/representation is important for sharing training/testing data in the learning
phase of individual tools.

5 Problem-Solving Methods of Deductive Web Mining

The textual descriptions of three core tasks introduced in the previous section
only specify the input and output of these tasks, in a style analogous to Com-
monKADS [17]. A natural next step towards reusable knowledge models thus
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seem to be the identification of appropriate problem-solving methods, and their
representation in the form of inference and task diagrams.

Among the three tasks, it is Classification that is most appropriate for com-
parison with existing PSM research. Classification problem solving was recently
systematised by Motta&Lu [16]. Their taxonomy of classification problems is
mainly derived from the presence (or absence) of a few key features:

1. Whether the goal is to find one, all or the best solution. This distinction can
well be ported to the DWM context.

2. Whether all observables are known at the beginning or are uncovered op-
portunistically (typically at some cost) during the problem solving process.
In DWM, the latter is typically the case (provided we interpret ‘observ-
ables’ as the web objects themselves); the cost is however only associated
with download/analysis time, and its increase is smooth—unlike e.g. medi-
cal applications, where addition of a single examination may lead to abrupt
increase of (financial or social) cost.

3. Whether the solution space is structured according to a refinement hierar-
chy. Presence of class hierarchy is quite typical in DWM; in the Rainbow
project, it is reflected in concept taxonomies that constitute our ontology,
see Section 4.

4. Whether solutions can be composed together or each presents a different, self-
contained alternative. We believe that in DWM, elementary classification will
mostly be carried out over disjoint classes, but can be superposed by multi-
way classification with non-exclusive class taxonomies. We discuss this option
below, in connection with the refine inference of Heuristic Classification.

Let us now present a collection of eight PSMs for DWM. It is rather tentative,
yet seems to cover a large part of realistic cases; examples will be given in
section 6.

For Classification, we could consider three PSMs. Look-up based Classifica-
tion amounts to picking the whole content of the given object (cf. the Overall



Extraction PSM below), and comparing it with content constraints (such as
look-up table), which yields the class; for example, a phrase is a Company Name
if listed in business register. Compact Classification corresponds to a single in-
ference, which is however not based on simple content constraints but on some
sort of computation (e.g. Bayesian Classification), which is however out of the
scope of the knowledge modelling apparatus. Finally, Structural Classification
corresponds to classification of an object based on the classes of related ob-
jects (sub—objects, super—objects and/or neighbours). It is thus decomposed to
retrieval of related objects, their individual classification, and, finally, evalua-
tion of global classification patterns for the current object. It is therefore recur-
sivel?: its ‘inference structure’ typically contains full-fledged (Direct) Retrieval
and Classification tasks. We can also compare Structural Classification with the
well-known Clancey’s Heuristic Classification (HC) [6], consisting of abstract,
match and refine inferences; HC was also chosen as the default PSM for clas-
sification by Motta&Lu [16] (other models were viewed as its reductions). In
(DWM) Structural Classification, the abstract inference is replaced with classify
inferences applied on related (contained and/or adjacent) objects; this is due to
the ‘object-relation-object’ (rather than ‘object-feature-value’) character of web
data representation. The match inference from HC corresponds to ‘evaluation of
global classification patterns’. Finally, a refinement from general to case-specific
solution might rather have the form of classification according to multiple hi-
erarchies in DWM. The object is then assigned to the class that is defined as
intersection of both original classes. For example, in the pornography application
(section 6.1), an object classified as Image Gallery may also be independently
classified as Scarce Text Fragment, which yields the class Porno Index.

For Extraction, there will be again three PSMs, rather analogous to those
of Classification. Quverall Extraction amounts to picking the whole content of
the given object. Compact Extraction corresponds to a single inference based on
possibly complex computation, which directly returns the content of specific sub-
object/s of the given ‘scope’ object. Finally, Structural Extraction corresponds
to extraction of information from an object via focusing on its certain sub-
objects. Such objects have first to be retrieved, then lower-grained eztraction
takes place, and, finally, multiple content items possibly have to be integrated.
Structural Extraction is thus equally recursive as Structural Classification.

Finally, let us first introduce two PSMs for the Retrieval task. The upper
inference structure'® at Fig. 2 corresponds to Direct Retrieval and the lower
one to Index-Based Retrieval, respectively. The names of inferences (in ovals)
are mostly borrowed from the CommonKADS library [17], while the knowledge

12 The notion of recursion previously appeared in knowledge modelling literature, e.g.
in the form of Systematic Refinement as form of classification [21]. Here, however,
the problem is more severe, since a recursively processed data structure appears in
a dynamic rather than static role (in the CommonKADS sense).

13 We did not show inference structures for Classification and Extraction, due to lim-
ited space as well as due to incompatibility of their structural variants with the
CommonKADS notation, see below.
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Fig. 2. Inference structures of Retrieval PSMs

roles are more DWM-specific. In Direct Retrieval, potentially relevant objects
are first retrieved based on structural (parthood and adjacency) constraints,
and then classified. Objects whose classes satisfy the class constraints are the
output of the method. In the absence of class constraints, the method reduces to
the ‘specify’ inference. In Index-based Retrieval, the (abstract) class constraints
are first operationalised so that they can be directly matched with the content of
objects. Then the objects are retrieved in an index structure (which is considered
as separate from the web space itself), possibly considering structural constraints
(provided the index also stores structural information).

An interesting issue related to the representation of above PSMs is the pos-
sible interaction of different ‘time horizons’ in one application; static roles may
become dynamic when changing the time scale. For example, a typical DWM
application may first build an index of a part of the website (or learn class def-
initions from a labelled subset of objects), and then use the index to efficiently
retrieve objects (or use the class definitions to classify further objects). This
interaction deserves a further study.



6 Example Descriptions of DWM Applications

Let us now describe concrete applications in terms of the TODD framework,
including the mapping of tasks to PSMs. For this purpose, we will use an ad hoc
semi-formal language with Prolog-like syntax. Its building blocks are decompo-
sitions of tasks (‘heads of clauses’) to ordered sequences of subtasks (‘bodies of
clauses’). Individual task descriptions (‘literals’) look as follows, respectively:

Cla?(<obj_var>, <obj_type>, <data_type>, <domain>, <classes>)
Ret?(<obj_var>, <obj_type>, <data_type>, <domain>, <constraints>)
Ext?(<obj_var>, <obj_type>, <data_type>, <domain>, <content>)

The ‘predicate’ (task name) corresponds to the first dimension in the TODD
framework. An extra letter is used to distinguish the PSMs introduced in the
previous sections: ClaS for Structural Classification, ClaL for Look-up based
Classification, ClaC for Compact Classification; RetD for Direct Retrieval, RetI
for Index-based Retrieval; ExtS for Structural Extraction, ExtC for Compact
Extraction and Ext0 for Overall Extraction. From the nature of the PSMs follows
that each ClaS task can be decomposed to a structure including (among other)
one or more subtasks of type Classification; analogously, each ExtS task can be
decomposed to a structure including one or more subtasks of type Extraction. In
the examples, the ‘unification’ of a ‘goal” with a ‘clause head’ is always unique;
the representation is only ‘folded’ for better readability.

The remaining three TODD dimensions are reflected by the ‘arguments’
<obj_type>, <data_type> and <domain>. <obj_var> is variable referring to the
‘current’ object of the task instance: input object in the case of Classification
and output object/s in the case of Retrieval. We use object variables (and object
types) even for Extraction; however, here they only refer to the scope of extrac-
tion, not to a ‘current’ object as in Classification and Retrieval. <classes> is the
list of classes distinguished in the classification task (beside named classes, we
use the symbol other for a ‘complement’ class). <constraints> is the list of log-
ical expressions determining the set of objects to be retrieved; they correspond to
the knowledge roles Class Constraints (class membership restrictions) and Struc-
tural Constraints (parthood/adjacency restrictions). Finally, <content> is the
list of types of content information to be extracted. For simplicity, the language
does not consider the cardinality of input and output.

We first describe the Rainbow applications: pornography-recognition appli-
cation [22] and two variants of bicycle offer extraction [20]. Then we, for better
coverage, attempt to describe three DWM methods from the literature: the com-
pany website classification method by Ester et al. [9], the information extraction
application for foundry websites by Krotzch & Rosner [14], and the bootstrap-
ping approach to website information extraction by Ciravegna et al. [5]. The
common aspect of all of them is the effort to overcome the limitations of single
resource and/or single representation in web mining. However, the symbol-level
principles of the methods are different: the first relies on probabilistic reasoning,
the second on a mix of domain-specific heuristics, and the third on shallow NLP



augmented with knowledge reuse. Due to limited space, we sometimes slightly
simplify the structure of applications, without affecting their core principles.

6.1 Pornography-Recognition Application

The upper level of the pornography-recognition process is an instantiation of
the Structural Classification PSM as discussed in the previous section. In order
to classify the whole website (i.e. document collection), symptomatic ‘out-tree’
topology structures are first sought; their sources (local hubs) can possibly be
identified with ‘index’ pages with image miniatures. To further verify that, the
hub is examined for presence of ‘nudity’ PICS rating in META tags (Look-up
Classification PSM), for presence of indicative strings in the URL, and its whole
HTML code is searched for ‘image gallery’-like structures with low proportion of
text (which distinguishes pornography from regular image galleries). The analy-
sis further concentrates on individual pages referenced by the hub and attempts
to identify a single dominant image at each of them; the images are then anal-
ysed by (bitmap) image analysis methods, in particular, the proportion of body
colour and the central position of a dominant object are assessed. In the de-
scription, we omit the ‘evaluation of global classification pattern’ subtasks, for
brevity; their inclusion would be straightforward.

ClaS(DC, DocCollection, _, Pornography, [PornoSite,@other]) :-
RetD(D1, Document, topology, General, [D1 part-of DC, LocalHub(D1)]),
ClaS(D1, Document, _, Pornography, [PornoIndex,@other]),
RetD(D2, Document, topology, General, [D2 follows D1]),
ClaS(D2, Document, _, Pornography, [PornoContentPage,@other]).
% classification of index page
ClaS(D, Document, _, Pornography, [PornoIndex,@other]) :-
ClaL(D, Document, meta, Pornography, [PornoResource,@other]),
ClaS(D, Document, url, Pornography, [PornoResource,@other]),
RetD(DF, DocFragment, html-txt, General, [DF part-of D, ImgGallery(DF)]),
ClaC(DF, DocFragment, freq, General, [ScarceTextFragment,Qother]).
% classification of content page
ClaS(D, Document, _, Pornography, [PornoContentPage,@other]) :-
ClaL(D, Document, meta, Pornography, [PornoResource,@other]),
RetD(Im, Image, html-txt, General, [Im referenced-in D]),
ClaC(Im, Image, image, Pornography, [PornoImage,@other]).

6.2 Bicycle Application

Navigational Data Access The start-up scenario for extraction of user-oriented
information from bicycle-selling sites is centred around navigation-based access
to individual pages; for the time being, we use URL analysis (admittedly, a
weak method only suitable for initial prototype) for this purpose. Subsequently,
statistical extraction (Hidden Markov Models) is applied to obtain structured
information (products, company address), while phrasal patterns are applied on
the (presumably) free text describing the overall company profile. All Retrieval



tasks (for navigation-based access to pages as well as at the level of phrases in
the last subtask) are mapped on the Direct Retrieval PSM. Most Extraction
tasks shown correspond to Structural Extraction. However, at the lowest level,
company address is obtained via Compact Extraction, and company description
(sentences) are obtained via Overall Extraction. Product information is still a
Structural Extraction; if we decomposed it further (not shown in the code), it
would however consist of Compact Extraction followed with integration of indi-
vidual information (names, prices and the like) to a more complex structure.

The real application also includes other types of analysis (topology, META
tags, images). We however omit them for brevity.

ExtS(DC, DocCollection, _, Bicycle, [products, comp_addr, comp_descr]) :-
ExtS(DC, DocCollection, _, Bicycle, [products]).
ExtS(DC, DocCollection, _, Company, [comp_descr]).
ExtS(DC, DocCollection, _, Company, [comp_addr]).

% extraction of product information from catalogue pages

ExtS(DC, DocCollection, _, Bicycle, [products]) :-
RetD(D, Document, url, Company, [D part-of DC, ProductCatalogue(D)]),
ExtS(D, Document, html, Bicycle, [products]).

% extraction of company address from the contact page

ExtS(DC, DocCollection, _, Bicycle, [comp_addr]) :-
RetD(D, Document, url, Company, [ContactPage(D)]),
ExtC(D, Document, html, Company, [comp_addr]).

% extraction of general company profile from the proflle page

ExtS(DC, DocCollection, _, Bicycle, [comp_descr]) :-
RetD(D, Document, url, Company, [D part-of DC, ProfilePage(D)]),
RetD(P1, Phrase, text, Company, [P1 part-of D, ProfilePhrase(P1)]),
RetD(P2, Phrase, text, General, [Sentence(P2), P1 part-of P2]),
Ext0(P2, Phrase, text, General, [comp_descr]).

Index-Based Data Access Among alternative methods of page access, we are
seriously considering the one taking advantage of the available full-text database
engine (AmphorA), with its capability of term indexing combined with XML in-
dexing. The parts of website suitable for detailed extraction can be efficiently
detected via lexical indicators (e.g. phrases typically occurring nearby product
catalogues): some sort of XML environment of the indicators can then be sub-
mitted to the extraction tool. Since the overall structure of the application is
analogous to the previous one, we only show a fragment, in which Index-based
Retrieval of indicative phrases plus Index-based Retrieval of ‘mark-up environ-
ment’ (in a native XML database storing the HTML trees) appears.

ExtS(DC, DocCollection, _, Bicycle, [products, ...]) :-
RetI(P, Phrase, text, Company, [P part-of DC, ProductCataloguePhrase(P)]),
RetI(DF, DocFragment, html-tree, General, [DF contains P]),
ExtC(DF, DocFragment, html, Bicycle, [products]),



6.3 Website Mining by Ester et al.

The method is not knowledge-based: it relies on Bayesian classification of indi-
vidual documents over the feature space of terms, and then again on Bayesian
classification, this time of the whole website (i.e. document collection) over the
feature space of individual document’s topics. Hence, the overall task pattern
amounts to Structural Classification similar to the pornography-recognition task,
while the embedded (Bayesian) classifications are Compact.

ClaS(DC, DocCollection, _, Company, TopicSet) :-
RetD(D, Document, topology, Company, [D part-of DC]),
ClaC(D, Document, freq, Company, TopicSet),
ClaC(DC, DocCollection, freq, Company, TopicSet).

6.4 Company Profile Extraction by Krotzch&Ro6sner

The overall scheme is similar to the bicycle application, except that product
information is only extracted from tables (via heuristics), while phrasal pat-
terns are used in a finer way, to extract not just sentences but names of either
customers or quality certificates.

ExtS(DC, DocCollection, _, Foundry, [products, customers, certificates]) :-
RetD(D, Document, html, Company, [D part-of DC, InfoPage(D)]),
ExtS(D, Document, _, Foundry, [products]),
ExtS(D, Document, _, Company, [customers]),
ExtS(D, Document, _, Company, [certificates]).

% product information extraction

ExtS(D, Document, _, Foundry, [products]) :-
RetD(DF, DocFragment, html, General, [DF part-of D, ContentTable(DF)]),
ExtS(DF, DocFragment, html, Foundry, [products]).

% customer information extraction

ExtS(D, Document, _, Company, [customers]) :-
RetD(P1, Phrase, text, Company, [P1 part-of D, CustomerPhrase(P1)]),
RetD(P2, Phrase, parse-tree, General, [P2 depends-on P1]),
Ext0(P2, Phrase, text, General, [customers]),

% certificate extraction

ExtS(D, Document, _, Company, [certificates]) :-
RetD(P1, Phrase, text, Company, [Pl part-of D, QualityPhrase(P1)]),
RetD(P2, Phrase, parse-tree, General, [CertName(P2), P2 depends-on P1]),
Ext0(P2, Phrase, text, General, [certificates]).

6.5 Bootstrapping Information Extraction by Ciravegna et al.

The approach described in [5] heavily relies on knowledge reuse, thanks to the
well-known redundancy of WWW information. We only describe the most elab-
orated part of the method, targeted at extraction of person names (additionally,
various personal data and paper titles are extracted for the persons in ques-
tion). First, potential names are cropped from the website, and checked against



binary classification tools such as context-based named-entity recognisers (Com-
pact Classification), as well as against public search tools (namely, online bibli-
ographies, homepage finders and general search engines) that produce the same
binary classification (person name - yes/no) as by-product of offering informa-
tion on papers or homepages (i.e. Index-based Retrieval). Furthermore, for the
results of general web search, the page from the given site is labelled as home-
page if the name occurs in a particular (typically, heading) tag. The seed names
obtained are further extended by names co-occurring in a list or in the same
column of a table. Finally, potential person names from anchors of intra-site
hyperlinks are added.

ExtS(DC, DocCollection, _, CSDept, [names]) :-
RetD(P1, Phrase, text, General, [Pl part-of DC, PotentPName(P1)]),
% named entity recognition for person names
ClaC(P1, Phrase, text, General, [PName,@other]),
% use of public search tools over papers and homepages
RetI(P2, Phrase, freq, Biblio, P1 part-of P2, PaperCitation(P2)]),
RetI(D, Document, freq, General, [Pl part-of D, D part-of DC, PHomepage(D)]),
RetD(DF1, DocFragment, freq, General,
[Heading(DF1), DF1 part-of D, P1 part-of DF1),
Ext0(P1, Phrase, text, General, [names]),
% co-occurrence-based extraction
RetD(DF2, DocFragment, html, General,
[ListItem(DF2), DF2 part-of DC, P1 part-of DF2]),
RetD(DF3, DocFragment, html, General,
[ListItem(DF3), (DF3 below DF2; DF2 below DF3)]),
ExtS(DF3, DocFragment, text, General, [names]),
RetD(DF4, DocFragment, html, General,
[TableField(DF4), DF4 part-of DC, P1 part-of DF4]),
RetD(Q, DocFragment, html, General,
[TableField(DF5), (DF5 below DF4; DF4 below DF5)]),
ExtS(DF5, DocFragment, text, General, [names]),
% extraction from links
RetD(DF5, DocFragment, html, General,
[IntraSiteLinkElement (DF5), DF5 part-of DC]),
ExtS(DF5, DocFragment, text, General, [names]),

% extraction of potential person names from document fragments
ExtS(DF, DocFragment, text, General, [names]) :-
RetD(P, Phrase, text, General,
[DF contains P, PotentialPersonName(P)]),
Ext0(P, Phrase, text, General, [names]).

7 Related Work

In the IBrow project [1], operational PSM libraries have been for two areas
of document search/analysis: Anjewierden [3] concentrated on analysis of stan-
dalone documents in terms of low-level formal and logical structure, and Abasolo



et al. [2] dealt with information search in multiple external resources. Direct min-
ing of websites was however not addressed; IBrow libraries thus do not cope with
the problem of web heterogeneity and unboundedness, which motivated the de-
velopment of the TODD framework. Partially related is also the OntoWebber
project [11], in which a ‘website ontology’ was designed. It was however biased
by its application on portal building (i.e. ‘website synthesis’), and thus did not
fully cover the needs of automated analysis; moreover, the problem-solving side
of modelling was not explicitly addressed.

8 Conclusions and Future Work

We presented a general ontology-based knowledge-level framework for Deductive
Web Mining (DWM), determined its role with respect to KADS-style problem-
solving modelling, and endowed the core DWM tasks with corresponding problem-
solving methods. Finally, we demonstrated the usability of the framework on
several examples of our own as well as others’ applications.

Although the TODD framework seems to be useful for communication of
(semi-formal) application descriptions among humans, it is desirable to proceed
to its fully operational exploitation. We plan to develop a meta-level tool on
the top of our Rainbow architecture, which would enable formal verification
and even semi-automated composition of DWM applications similar to those
referenced in section 6. The experience (and possibly even the tangible results)
of the IBrow project might help us in this effort. We plan to transform our
models to the UPML language (developed in IBrow) so as to align them with
the most recent PSM research achievements. The current research on semantic
web service composition'? is also highly relevant.

Finally, a natural next step to DWM modelling would be to cover Inductive
Web Mining as well. In a sense, our ‘library’ thus would be extended (taking
analogy with KADS libraries [21], [17]) to cover not only System Analysis but
also System Synthesis.
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