
Product information extraction from

semistructured documents using HMMs

Martin Labský

Department of Information and Knowledge Engineering,
University of Economics, Prague, W. Churchill Sq. 4, 130 67 Praha 3, Czech Republic

labsky@vse.cz

Abstract. In this paper we present preliminary results for information
extraction (IE) performed over a set of HTML documents using Hid-
den Markov Models (HMMs). In our experiments, we restrict ourselves
to the domain of bike products sold on the Internet. The information
to be extracted consists of bike model attributes and details regarding
the company’s offer. We experiment with a simple extension to HMMs
which models the inner structure of chosen extracted slots. Results are
presented in terms of precision and recall.

1 Introduction

Information extraction (IE) is a process of automatically annotating parts of text
with semantic tags. Typically, these tags correspond to attributes of entities
in some model of the domain (often a database schema or an ontology). In
combination with such model, IE is often used for database (or knowledge base,
KB) population tasks.

In our experiments, we work with a simple ontology1 about bikes, shops and
bike parts, and our goal is to automatically populate and update the ontology’s
KB with instances from the Internet. The desired application is a limited-scope
semantic search engine2, capable of answering structured queries about the in-
stances present in its KB and pointing its users to the original company websites.

For this domain, we decided to use statistical methods for IE, since they
generally tend to be robust when encountering biased and highly varying data.
HMMs have been successfully used for IE (e.g. [1], [2]) since the end of the last
decade. Typically, information has been extracted from data such as seminar
invitations (speaker, time, place) or job advertisements. However, these methods
have mostly been evaluated on similar documents (in terms of size, formatting,
and amount of information presented), often obtained from a single source. In
our work, we experiment with a more diverse set of documents which comes from
arbitrary shops’ websites.

HMMs are finite state machines augmented with state transition probabilities
and lexical probability distributions for each state. Text is modelled as a sequence
1 bike ontology is available at http://rainbow.vse.cz/bikes/
2 the search engine will integrate other components of the Rainbow [4] framework

of tokens (may include words, punctuation, formatting symbols). When applying
an HMM to text, the text’s token sequence is assumed to have been generated by
that model (by transitioning between states and emitting a token in each state).
In the simplest form, each semantic tag is modelled by a single HMM state,
plus there is a “background” state for modelling uninteresting tokens. Both the
transition and lexical distributions of the model can be trained from labeled
training data. During tagging, we are interested in the most likely state (tag)
sequence of the model that would have generated the input text. This task is
solved effectively by the Viterbi dynamic programming algorithm (e.g. [2]).

2 The Model Structure

In our approach, we use an HMM state structure inspired by [1]. The extracted
tokens are modelled using the so-called target states, which may be accompanied
by two types of states responsible for representing their characteristic context -
the prefix and suffix states. Irrelevant words are modelled by a single background
state. Contrary to [1], which uses independent HMMs trained for each tag, we
train a composite HMM which contains several types of target states and is thus
capable of tagging with multiple tags. This is an approach similar to [2] and for
our task it is advantageous since it extensively exploits ordering relations between
nearby tags (e.g., bike model name is often followed by its price). Compared to
a single-tag model, this architecture also prevents crossing tags at the moment
of merging results of individual models.

We model the whole document using a single HMM. In order to capture the
ordering relationships between extracted elements, which often are not adjacent,
we work with a tag trigram model (HMM state is represented by a pair of
tags), which we expect to be capable of learning more distant relations than
the typically used tag bigram model. Deleted interpolation [3] is used to smooth
transition probabilities. To compute unknown word lexical probabilities for each
tag, we use absolute discounting in the same way as [2].

3 Training the Model

According to attributes in the bike ontology, we manually annotated3 a set of
100 HTML documents obtained from about 40 bike shop websites in the UK.
For choosing these websites, we used the first 40 addresses from the Google Di-
rectory Sports-Cycling-Bike Shops-Europe-UK-England. From each such website
we manually selected 1 to 5 documents offering at least one bike model and con-
taining at least its name and price. The annotations have been made by inserting
SGML tags into the raw downloaded documents. These documents are highly
diverse, offering from 1 to about 50 bikes each, with different levels of detail of
the bikes’ descriptions.

3 training data is available under http://rainbow.vse.cz/bikes/

Before training and tagging, we employ extensive preprocessing, which con-
verts HTML documents into suitable sequences of tokens. For the most part,
this step disposes of a part of HTML formatting tags, canonises HTML enti-
ties, detects word boundaries, and substitutes certain tokens with token classes.
For example, all HTML tags denoting blocks are classified as <block>. Similar
classification is done for inline HTML tags, images and forms. Since we are inter-
ested in extracting only words and images, and the HMM has limited memory,
we construct the token sequence by concatenating contents of only those HTML
blocks that directly (i.e. not only via other blocks) contain words or images.
Finally, we treat all numbers as a single class, as well as all words containing
both digits and letters.

The preprocessed token sequences are used to train the transition and lexical
probability distributions using ratios of counts, since in our approach there is al-
ways a single state sequence visible in a given training document. In the training
data, we observe just the labeled extracted tags. To populate also the prefix and
suffix states, we consider the 2 preceding and the 2 following tokens as members
of the prefix and suffix states, respectively. We use less then 2 token windows in
cases of encountering another nearby semantic tag or document boundaries.

For modelling the distributions of background tokens and each target’s prefix
and suffix tokens, we use a naive approach and model each of these using a
single lexical distribution, thereby ignoring their internal structures. However,
for certain tags such as name and price, there is a significant structure that
needs to be modelled. One approach is to model the tag’s content by a small
HMM that is effectively used in place of the original single target state ([1],
[2]). We experimented with a different approach. We conditioned the state’s
lexical probability not only on its tag, but also on a short history of tokens
seen so far within the same tag. In this way, the lexical distribution of a state
having tag t is made dependent on the previous n-word history provided these
n words are tagged with t. We speculate this might make tagging more exact in
case enough training data is provided. In the Viterbi algorithm, the tag trigram
model enables us to look at a history of 2 words, knowing the tags assigned to
them. Therefore, we are able to use a word bigram and/or trigram model as
the basis for computing the target state’s lexical distribution. Specifically, we
interpolate the original word unigram distribution used for a particular tag with
a word bigram distribution, and eventually with a word trigram distribution.
Weights of these distributions are computed using the EM algorithm [1] over
the tag’s training data. Our experiments show a slight increase in both precision
and recall for most tags modelled in this way.

4 Tagging Results

The tagging results have been evaluated on test data using precision and recall
on a per-token basis. For each word, the correct and assigned tags have been
compared. In Table 1, we present results for selected attributes of offered bike
models. Results of modelling tags with word bi- and trigram models are brack-

eted. All results were obtained using 10-fold cross-validation on the whole set of
labeled 100 documents, with the presented values averaged.

Table 1. 10-fold cross-validation results for selected tags

Tag recall precision instances
name 77.9 (78.6) 63.5 (65.6) 927
price 98.9 (99.1) 89.5 (88.9) 971
picture 69.0 89.6 359
speed 86.8 93.6 186
size 83.2 93.7 173
year 98.1 70.0 160

5 Conclusions and Future Work

We have presented preliminary results of product IE over a set of diverse docu-
ments from multiple sources. There are several directions for future work. After
we improve our results, we need to construct instances (template IE) by com-
bining annotations into structures according to the ontology’s classes and con-
straints (e.g. cardinality, data types or axioms). A way of modifying the Viterbi
algorithm to support constraints is described in [2].

In our experiments with product catalogues, we have noticed that the tagger
often classifies most product entries correctly, but occasionally misses several
product names, because they are very different from the training data. We de-
veloped a simple symbolic algorithm which identifies similar structural patterns
in a document. For example, the HTML tag sequence <td> <a>

 </td> with arbitrary words in between appears 34 times in one of
our training documents. In this case, the tagger successfully annotates 28 prod-
uct names contained in these patterns between and
, but misses
the remaining 6. In cases like this, we want to recover the remaining product
names and use them to enrich the model’s training data. By learning novel prod-
uct names from these “easy” pages, the model will learn to recognise them also
in less structured documents. Other bootstrapping strategies are covered in [5].

References

1. Freitag D., McCallum A.: Information extraction with HMMs and shrinkage. In:
Proceedings of the AAAI-99 Workshop on Machine Learning for IE, 1999.

2. Borkar V., Deshmukh K., Sarawagi S.: Automatic segmentation of text into struc-
tured records. In: SIGMOD Conference, 2001.

3. Schroeder I: A Case Study in Part-of-Speech Tagging Using the ICOPOST Toolkit.
University of Hamburg, Computer Science Department, NATS, 2002.

4. Svatek V. et al: Rainbow - Multiway Semantic Analysis of Websites. In: The 2nd
Int. DEXA Workshop on Web Semantics, IEEE Computer Society Press 2003.

5. Dingli A., Ciravegna F., Guthrie D., Wilks Y.: Mining Web Sites Using Unsupervised
Adaptive Information Extraction. In: EACL, 2003.

