
XML Query Support for Web Information
Extraction: A Study on HTML Element Depth

Distribution

Michal Krátký1, Marek Andrt1, Vojtěch Svátek2

1Department of Computer Science, VŠB – Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava–Poruba, Czech Republic

{michal.kratky,marek.andrt}@vsb.cz
2Department of Information and Knowledge Engineering, University of Economics,

Prague, W. Churchill Sq. 4, 130 67 Praha 3, Czech Republic
svatek@vse.cz

Abstract. Knowledge-based web information extraction methods can
achieve very high precision in restricted domains; they are however slow
and suffer from performance degradation beyond their specific domain.
We thus plan to adapt an existing XML storage and query engine to
act as efficient pre-processor for such methods. The critical point of the
approach is the amount of information provided as XML environment of
the start-up terms/elements. For this purpose, we carried out a statistical
analysis of depth distribution in the WebTREC collection.

1 Introduction

Information Retrieval (IR) [2] and Information Extraction (IE ) are two com-
plementary research areas. While IR addresses the discovery of whole (or, at
least, sections of) documents, IE breaks them down to the level of arbitrarily
small content fragments. Simple form of IR support was already considered in
traditional IE models such as those examined in MUC1 contests. However, the
rapid evolution of XML query technology [18] together with partial reconcilia-
tion between HTML and XML (esp. larger support for XHTML) recently paved
the way for more sophisticated IR–IE coupling. Although XHTML only imposes
a very loose structure over the text of web pages, some aspects of its tree struc-
ture may be useful for IE purposes. This is particularly true for wrapper-like
IE approaches, which explicitly model the structure of HTML formatting such
as tables, lists or systematic font alterations. However, traditional wrappers [11,
14] typically assume extraction from complete pages structured in a uniform
database-like manner. Obviously, manipulating small portions of XHTML trees
only may only bring benefits if sparse fragments of useful information are to be
extracted from large amounts of HTML data – we might call it selective wrap-
ping. Moreover, the overhead of initial XML indexing only pays off when the
1 http://www.itl.nist.gov/iaui/894.02/related projects/muc/



same source information is used several times, e.g. for extraction of different
entities, for their classification and the like.

There are rather few approaches to automated web analysis that systemati-
cally address different types of information available within websites and would
thus benefit from XML indexing support. One of them is the Rainbow2 project.
On the other hand, the required XML indexing and querying functionality is
currently being provided in the form of web services, in the AmphorA3 tool.
AmphorA can potentially provide the Rainbow tools with input data of adequate
type and size, i.e. it can act as sophisticated pre-processor for information ex-
traction methods. The starting point for such data supply can be keyword-based
searching of XML data [12]. The critical point of the approach is however the
amount of information provided as XML environment of the start-up terms/ele-
ments. The first, very rough approximation of adequacy for XML environment
may merely be inferred from the typical depth of interesting HTML element
types (which are likely to contain the text to be extracted).

Due to the fact that we depict an usage of XML indexing engine for purpose
of IE, in Section 2 recent XML indexing approaches and query languages are
described. Section 3 presents the tools Rainbow and AmphorA. Section 4 de-
scribes the WebTREC collection which is used for analysis of depth distribution
of HTML element types, next the result of that analysis is presented. In the
conclusion we summarize the paper content and outline possibilities of a future
work.

2 XML Storage and Querying – State of the Art

2.1 Query languages over XML

A number of languages have been developed for querying over XML data e.g.,
XML-QL [7], XPath [4], and XQuery [19].The common feature of such languages
is the usage of regular path expressions for formulation of the path in the graph
modelling an XML document. Such a path is a sequence of element or attribute
names from the root element to a leaf. XML query languages such as XQuery
contains considerably complex techniques for querying XML data which lead to
rather complex implementation. XPath is a frequently used subset of XQuery.
This query language uses expressions to select a set of elements or attributes.
Expressions comprise location paths, patterns and predicate filters. It is possible
to specify the path location either absolutely or relatively. Moreover it is possible
to use the axis which corresponds to the direction from the current to the spec-
ified element. Location paths select element type and its location. In order to
remove undesired elements, it is possible to use predicate filters. XPath supports
filters to position, elements, attributes, boolean tests, strings and numbers.

For purpose of IE it is suitable to extend XML query language in the IR man-
ner. For example, the operator ∼= is applied for keyword-based searching. Let us
2 http://rainbow.vse.cz
3 http://arg.vsb.cz



take queries //doc[//h1∼=’Information’] or //table[th∼=’Prize’], where
∼= is an operator containment of a term in the element content or attribute
value.

2.2 Recent XML indexing approaches

Currently there are several approaches to indexing XML or, more general, semi-
structured data. We may divide them into two categories. One kind of approaches
use traditional relational technology, while other approaches use special data
structures for representation of XML data.

The first category comes from the idea that semi-structured data can be
stored as a ternary relation. However that straightforward mapping is not effi-
cient. In these approaches proprietary repositories are used to store the document
schema and data. Such solutions provide a large flexibility but sometimes they
incur space and time costs because of replicating the schema and processing repli-
cated schema. The classical research based on relational decomposition of XML
document is STORED [8]. It attempts to generate a good relational schema auto-
matically for the existing XML data instance. The generated STORED mapping
may not capture the whole data instance. Portions of data which do not fit into
the relational schema are stored in an overflow graph which can be implemented
by non-relational storage or by the simple ternary relation. Mapping algorithms
rely on the notions of storage patterns and pattern support. Storage pattern
consists of a prefix path and a set of attributes and sub-elements which is called
the body. Pattern support is the number of XML elements reachable in the doc-
ument by the pattern prefix path and containing nodes described by the pattern
body. The algorithm calculates the patterns with the highest support and then
it groups them to satisfy the restrictions on the number of tables, attributes and
total disk space. Finally patterns are translated into STORED mappings and
the accompanying overflow mappings.

An XML indexing and retrieval model called Hybrid storage model [16] ap-
plies different methods to indexing text according to element content and at-
tribute value. In principle, the first one is realized as a full-text index while the
second one is implemented using a conventional relational DBMS. The resultant
hybrid system architecture called XRS-II brings to the user possibility of issu-
ing complex queries which combine similarity queries used in classical full-text
search engines as well as attribute matching used in relational databases.

As was mentioned above the rest of approaches use special data structures
as a trie (e.g. Index Fabric [6] and DataGuide [15]), multi-dimensional data
structures (e.g. XPath Accelerator [9] or [13]), or signature data structures [20].
The XPath Accelerator may employ multi-dimensional structures to store 5-
dimensional points which represents XML nodes. As such, the index is capable
to support all XPath axes. The index can be implemented and queried using
purely relational techniques, but it performs especially well if the underlying
RDBMS provides support for R-trees. XPath accelerator use Dietz’s numbering
scheme. Each node v is represented by its 5-dimensional descriptor: desc(v) =
< pre(v), post(v), par(v), att(v), tag(v) >, where pre(v) and post(v) are members



of Dietz’s numbering scheme, par(v) represents pre(v) of parent applicable node,
att(v) indicate attribute or element and tag(v) contains a unique number of name
element or attribute. Preorder and postorder of a node h represents the plane
which is divided by certain point corresponds with node h to four partitions. The
lower-right partition contains all descendants of h, in the upper-left partition
we find the ancestors of h, the lower-left region hosts the node preceding h
in document order, and finally the upper-right partition represents the nodes
following h in document order. That means then only these two coordinates of
5-dimensional points allow effective querying to 7 axis of XPath (descendant,
descendant-or-self, parent, ancestor, ancestor-or-self, following, preceding) and
with par(h) and attr(h) allow efficient querying of all XPath axis.

Some approaches like [13] employ data structures like R-tree [10] and UB-
tree [3]. These approaches are based on the idea that the root to a leaf path
may be represented as a point of a vector space. Such an approach is more
efficient in that case of long path queries than XPath Accelerator. We see it is
important to know the element depth distribution for purpose of efficiency of
query performance.

3 Overview of Tools: Rainbow and AmphorA

3.1 The Rainbow project

The Rainbow4 project represents a family of more-or-less independent web-
mining projects undertaken by our research group5. Their unifying principles
are commitment to web-service (WSDL/SOAP) front-end and agreement on
a shared upper-level ontology. Furthermore, for each application, the develop-
ers involved also agree on a domain and share the source of training/testing
data. Otherwise, the formal principles of analysis methods vary (from linguistic
through statistical to e.g. graph theory), and so does the representation of data,
also nicknamed as ‘web view’ (such as free text, HTML trees or link topology). In
this way, the natural complementarity and/or supplementarity of information in-
ferable from different types of web data can be exploited. Three application areas
have been attacked so far: recognition of web pornography, extraction of informa-
tion about companies and extraction of product offers from bicycle catalogues.
More information can be found at the project homepage http://rainbow.vse.cz.

Information extraction plays an important role in Rainbow. Beside statistical
(Hidden Markov Models) and shallow linguistic approaches to IE, we recently
started to examine systematic use of higher-level visual patterns corresponding
to different ’symbol-level’ structures in HTML code. For example, the assignment

4 Stands for ‘Reusable Architecture for INtelligent Brokering Of Web information
access’. Beyond the acronym (shared with a host of other research projects), the
name is motivated by the idea that multiple independent tools for analysis of web
data should synergistically ‘shed light’ on the web content, in a similar way as the
different colours of the rainbow join together to form the visible light.

5 Knowledge engineering group at the University of Economics, Prague.



of ’value’ to ’variable’ (or ’object’ to ’predicate’) with respect to a subject entity
can be expressed by means of a row/column in a table, heading + list item,
heading + short paragraph or the like [17]. The task of collecting candidate
statements (say, RDF triples) of different kind from a complex website may
be significantly eased by the existence of optimised XML index queriable via
keywords and returning a ’reasonable’ XML environment of the keywords rather
than the whole HTML document.

3.2 Description of the AmphorA Web Service

The AmphorA applies the multi-dimensional approach to indexing XML data [13]
for efficient querying such data. We support a subset of XPath for querying XML
(XHTML as well) documents which are stored in XML index. A subset contains
regular path expressions, predicate filters to elements and keyword-based search-
ing (the operator ∼= is applied).

The Amphora WS is implemented in C# language under .NET platform.
The multidimensional approach for indexing XML is implemented in C++ and
based on ATOM (Amphora Tree Object Model) framework which allows im-
plementation of persistent data structures. The web service provides several
methods which allow storage and querying web documents. Supported are In-
dex, DatabaseList, ResourceList and Query methods. The Index method al-
lows indexing of web sites. Parameter of that method is the URL of the root
web page and result is unique number of site in database. The HTML pages
are transformed to XML and indexed by the multi-dimensional approach. The
DatabaseList method returns a string with unique numbers of web sites indexed
in database. The ResourceList method with one parameter dbId which specifies
unique number of web site returns the list of web page URLs within the scope
of the web site. The Query method allows to query the specified database. The
first parameter is a dbId of database and the second one is a string representing
a query in a subset of the XPath language.

3.3 Coupling Rainbow with AmphorA

At the moment, only a small fragment of the functionality of AmphorA is avail-
able via web services and exploited by Rainbow, namely, the provision of whole
documents and of lists of hyperlinks. However, we plan to couple both tools
in a more efficient fashion. Knowledge-based methods such as those developed
in Rainbow can achieve very high precision in restricted domains such as ex-
traction of product information from company web pages. They are however
slow and suffer from performance degradation beyond their specific domain. An
XML tool such as AmphorA can potentially provide input data of adequate type
and size, i.e. it can act as sophisticated pre-processor for information extraction
methods. The starting point for such data supply can be keyword-based and/or
XML-structure-based search. For example, if the goal is to extract product in-
formation from company sites, AmphorA could return tables where a heading
contains keywords like ‘price’ or a column contains currency symbols, but also



e.g. bulleted lists following a paragraph containing keywords like ‘products’ or
‘offer’.

The critical point of the approach is however the amount of information
provided as XML environment of the start-up terms/elements. Too narrowly
defined environments may lead to missed context data that would subsequently
be needed by the IE tool. On the other hand, too broadly defined environments
may easily encompass the whole or most of the document, thus negating the
benefits of pre-processing.

The first, very rough approximation of adequacy for XML environment may
merely be inferred from the typical depth of interesting HTML elements (which
are likely to contain the text to be extracted). For this purpose, we carried out
a statistical analysis of depth distribution in the WebTREC dataset, described
in the following section.

4 Experimental Results

The WebTREC [1] collection is used to analyse the depth distribution of HTML
elements. The documents in collection include the information returned by the
http daemon (enclosed in DOCHDR tags) as well as the page content. The collection
consists of websites or gathered from the .gov domain (early 2002). Download has
been stopped after 1 million text/html pages. Collection also included text/plain
and the extracted text of pdf, doc and ps. The documents were truncated to
100k (reducing size from 35G to 18G). The collection comprises 1,247,753 (1.25
million) documents, includes 1,053,372 documents with text/html mime type.
The total size of the collection is 19,455,030,550 B = 18.1 G (without 100 k limit
was 35.3 G). Because such web pages are HTML pages (not XHTML) we need
to transform the pages in the XML (add missing tags and so on).

HTML pages are inserted into an XML document using tags DOC, DOCNO, and
DOCHDR. Such tags are missing in the following tables. In Tables 1– 3 we can see
element depth distribution in the Level 1, 2, and 3, respectively, of the XML
tree. In Table 1 we see element distribution in the first level of the XML tree.
A large amount of html tag was expected. Non-zero number of other tags gives
evidence to anomalies in HTML pages.

Table 1. Element Distribution in the Level 1 of WebTrec Collection

Tag % Tag % Tag % Tag % Tag %

html 95.03 body 0.81 center 0.27 table 0.13 ul 0.13
title 0.94 h1 0.4 link 0.27 a 0.13 base 0.13
head 0.81 br 0.4 p 0.13 hr 0.13 pre 0.13

Now in Tables 4– 6 we present the depth distribution of the element type td,
p, and li, respectively.



Table 2. Element Distribution in the Level 2 of WebTrec Collection

Tag % Tag % Tag % Tag % Tag %

head 43.14 html 0.99 a 0.6 center 0.4 li 0.2
body 38.17 div 0.8 br 0.6 tr 0.2 b 0.2
frameset 4.37 h1 0.8 hr 0.6 img 0.2 header 0.2
script 1.79 link 0.8 p 0.4 h2 0.2
noframes 1.39 td 0.6 table 0.4 font 0.2

Table 3. Element Distribution in the Level 3 of WebTrec Collection

Tag % Tag % Tag % Tag % Tag %

title 14.8 a 4.87 font 2.88 style 1.19 tr 0.89
table 14.10 script 4.67 frame 2.09 form 1.09 h3 0.70
meta 14.00 div 4.57 hr 1.99 h1 1.09 head 0.60
p 9.33 map 3.48 body 1.39 noscript 1.09 layer 0.60
center 5.56 br 3.38 link 1.29 img 0.89

Table 4. Depth Distribution of the element type td

Level % Level % Level % Level %

0 0 3 4.22 6 15.64 9 9.42
1 0 4 7.05 7 20.03 10 7.02
2 0 5 8.39 8 16.18 11 5.70

Table 5. Depth Distribution of the element type p

Level % Level % Level % Level %

0 0 3 7.61 6 13.94 9 5.76
1 2.05 4 8.58 7 16.99 10 5.04
2 4.10 5 10.65 8 11.89 11 3.89

Table 6. Depth Distribution of the element type li

Level % Level % Level % Level %

0 0 3 5.16 6 11.28 9 15.42
1 0 4 6.49 7 13.75 10 9.86
2 2.16 5 7.44 8 17.03 11 7.4



The most typical sources for web information extraction are unstructured
text (typically in p elements), tabular data (in td elements), and the content of
lists (in li elements). We can see that these elements most often occur between
levels 6–10 of the HTML structure. We can thus hypothesize that most adequate
XPath queries should retrieve the XML environment of about 2-3 levels up from
the indicative lexical item (and not reaching above level 3), to avoid returning
the whole (or most) of the document. More detailed experiments are however
obviously required to validate this hypothesis.

5 Conclusion

The long-term goal of our project is to use an XML-oriented IR tool for fine-
grained pre-processing of source data for information extraction. The presented
analysis of HTML element depth is a very humble first step in this direction. The
next and more demanding step will be the search for frequent HTML sub-trees
with respect to particular levels. We plan to develop the XML query functionality
in parallel with research on visual patterns, which can be both ’relational’ (e.g.
the above mentioned RDF triples) or hierarchical as described by Burget [5].

References

1. TREC-2002 Web Track Guidelines, http://es.csiro.au/trecweb/guidelines_2002.html,
2002.

2. R. Baeza-Yates and B. Ribiero-Neto. Modern Information Retrieval. Addison
Wesley, New York, 1999.

3. R. Bayer. The Universal B-Tree for multidimensional indexing: General Concepts.
In Proceedings of World-Wide Computing and Its Applications’97 (WWCA’97),
Tsukuba, Japan, Lecture Notes in Computer Science. Springer–Verlag, 1997.

4. A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez, M. Kay, J. Ro-
bie, and J. Siméon. XML Path Language (XPath) 2.0, W3C Working
Draft, Version 2.0. Technical report, WWW Consortium, December, 2001,
http://www.w3.org/TR/xpath20/.

5. R. Burget. Hierarchies in HTML Documents: Linking Text to Concepts. In
15th Int’l Workshop on Database and Expert Systems Applications, pages 186–190,
Zaragoza, 2004.

6. B. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and M. Shadmon. A Fast
Index for Semistructured Data. In Proceedings of the 27th International Conference
on Very Large Data Bases (VLDB’01), pages 341–350. Morgan Kaufmann, 2001.

7. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A
Query Language for XML. Technical report, WWW Consortium, August, 1998,
http://www.w3.org/TR/NOTE-xml-ql/.

8. A. Deutsch, M. Fernandez, and D. Suciu. Storing semistructured data with
STORED. In Proceedings of 1999 ACM SIGMOD International Conference on
Management of Data, pages 431–442. ACM Press, 1999.

9. T. Grust. Accelerating XPath Location Steps. In Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data, Madison, USA. ACM
Press, June 4-6, 2002.



10. A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In
Proceedings of the 1984 ACM SIGMOD International Conference on Management
of Data, Annual Meeting, Boston, USA, pages 47–57. ACM Press, June 1984.

11. C. Knoblock, S. Minton, J. Ambite, N. Ashish, P. Modi, I. Muslea, A. Philpot, and
S.Tejada. Modeling Web Sources for Information Integration. In Proc. AAAI-98,
Madison, WI, 1998.

12. M. Krátký and M. Andrt. On Efficient Part-match Querying of XML Data. In
Proceedings of DATESO 2004, 2004.

13. M. Krátký, J. Pokorný, and V. Snášel. Implementation of XPath Axes in the Multi-
dimensional Approach to Indexing XML Data. In Current Trends in Database
Technology, International Workshop on DataX, EDBT 2004, volume 3268 of Lec-
ture Notes in Computer Science. Springer–Verlag, 2004.

14. N. Kushmerick, D. S. Weld, and R. Doorenbos. Wrapper Induction for Information
Extraction. In Intl. Joint Conference on Artificial Intelligence (IJCAI), 1997.

15. J. W. R. Goldman. DataGuides: Enabling Query Formulation and Optimization
in Semistructured Databases. In Proceedings of 23rd International Conference on
Very Large Data Bases (VLDB’97), pages 436–445. Morgan Kaufmann, 1997.

16. D. Shin. XML Indexing and Retrieval with a Hybrid Storage Model. Knowledge
and Information Systems, 3(2), 2001.

17. V. Svátek, J. Bráza, and V. Sklenák. Towards Triple-Based Information Extraction
from Visually-Structured HTML Pages. In Poster Track of the Twelfth Interna-
tional World Wide Web Conference (WWW 2003), Budapest, 2003.

18. W3 Consortium. Extensible Markup Language (XML) 1.0, W3C Recommendation,
10 February 1998, http://www.w3.org /TR/REC-xml.

19. W3 Consortium. XQuery 1.0: An XML Query Language, W3C Working Draft, 12
November 2003, http://www.w3.org/TR/xquery/.

20. P. Zezula, G. Amato, F. Debole, and F. Rabitti. Tree Signatures for XML Querying
and Navigation. In Proceedings of XML Database Symposium, XSym 2003, volume
2824 of Lecture Notes in Computer Science, pages 149–163. Springer-Verlag, 2003.


