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Preface

The emergence of World-Wide Web was the most important breakthrough of the last decades
in the area of computing. Although it was originally developed for human ‘consumption’, its
direct exploitation by software tools soon became necessity. The size and heterogeneity of web
content and structure however presents an unprecedented challenge to existing technologies
of data processing. One of principal problems of automated WWW analysis is to keep as
much information as possible from the original content while maintaining tractability even
for large sizes of data. Specialised research and industrial communities typically perceive the
web space from different angles, and their mutual awareness is often limited. Most tools are
developed from scratch and their principles are not thoroughly compared with the state of
the art beyond a narrow field.

The central assumption in this thesis is that the notion of reuse, central to knowledge en-
gineering, should be systematically applied to web analysis. This reuse appears at multiple
levels. Rather obvious (and not unique to this project) is the implementation of simple tools
in such a way that they can, at the syntactic level, be combined into (i.e., reused in) unfore-
seen and sophisticated applications. Similarly, the same sets of raw web data could be reused
by multiple tools in the same or different application. The main contribution of the thesis is
however connected with the reuse of knowledge models, i.e. ontologies and problem solving
methods. It seems that these two types of models would enable to describe the web analysis
tools and the web space itself such that individual tools can be tuned to particular forms of
data and adequately combined.

The work described here has been carried out in several epochs, approximately from 2001
(though some very early results date to 1999) to 2005, at the Department of Information and
Knowledge Engineering of the University of Economics, Prague. It has been supported by
two Czech Science Foundation grants,

• 201/00/D045 “Knowledge model construction based on text documents” (2000-2003)

• 201/03/1318 “Intelligent analysis of WWW content and structure” (2003-2005)

and resulted in more than 30 reviewed publications.

It should be noted that a characteristic feature of research in applied computer science is its
collective nature. The project this thesis is based upon is not an exception; it was virtually
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impossible to formally separate my own research results with those provided by my younger
teammates (especially PhD and MSc students) without destroying the logical structure of
the text. Specific acknowledgments (in addition to the general ones below) are thus included
in the respective sections. By my, necessarily subjective, assessment:

• my proper research contribution is concentrated in sections/chapters 3.3, 3.5, 4.2.1, the
whole of 5, 7.1 and the whole of 8 (except 8.4.2)

• the results discussed in sections 3.1, 3.4, 4.2.2, 4.3, 7.2.1, 7.3 and 7.4 arose in tight
collaboration between me and my colleagues

• finally, my role concerning the results in 3.2, 3.6, 3.7, 4.1 and 7.2.2 was rather that of
occasional advisor.

The thesis starts with an introductory Chapter 1, which briefly presents the state of the art
in three research areas closely connected to its own focus: web information extraction (and in
more general, mining), semantic web and web services. The remainder of the thesis is broken
down to two different parts.

Part I is devoted to the implementation and experiments with the Rainbow collection of
web analysis (and associated) methods and tools, developed under my informal leadership
between 2001–2005. Chapter 2 follows the evolution of this collection along a historical axis.
Chapter 3, in turn, describes each constituent method/tool in a separate section. Finally,
Chapters 4 and 5 are devoted to integration aspects: in actual applications and within a
formal model, in turn.

In contrast, Part II focuses on abstract models of web data and analysis tools. It starts with
an explanatory Chapter 6 on state of the art in knowledge modelling, in general. Chapter 7
describes a conceptual framework for describing web analysis tools, and the associated col-
lection of ontologies. Finally, Chapter 8 deals with problem-solving methods (PSMs): among
other, it describes my recent research on PSM-based composition of web analysis services
carried out by means of simulated experiments.

As suggested above, I would like to thank my numerous senior as well as junior colleagues.
The former, especially Petr Berka and Václav Snášel, mostly contributed to the current
research with feedback on my rough ideas; I am also indebted to Petr for his initial idea of
investing our effort to the WWW as subject of ‘intelligent systems’ research, and for hiring me
to his VŠEvěd team as early as in 1998. Younger colleagues, especially Martin Kavalec, Jirka
Kosek, Martin Labský, Ondřej Šváb, Miroslav Vacura and Filip Volavka, mostly implemented
tools that enabled to test these ideas on real data while adding their valuable expertise as
well. The part of the work regarding problem-solving methods was done in co-operation
with Annette ten Teije from the Vrije Universiteit Amsterdam. I would also mention Vilém
Sklenák, the Head of Department, who offered me favourable conditions for completing the
thesis. My work was strongly supported by my family: my wife Miroslava, as well as my little
daughters Anna and Jana, created a nice environment for me, in which I could both work
and play with them. I was also strongly encouraged by my father and by my parents-in-law.
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Finally (but most importantly), I owe my thanks to the God, who governs my professional
carrier equally as the rest of my life: the emergence of the fabulous Rainbow research team
and the successful completion of this thesis in due time are just two among the numerous
blessings I experienced in the last few years.

Vojtěch Svátek, December 21, 2005
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Chapter 1

How to Make the Web
‘Computer-Understandable’?

The emergence of World-Wide Web was the most important breakthrough of the last decades
in the area of computing. Its size has been growing almost exponentially, and at the same
time, its underlying technology gradually evolved from purely textual, static HTML pages to
pages with rich multimedia content, frequently generated from databases and made interactive
thanks to scripts. Nevertheless, the web content is still meant to be exploited by human
users upon display in browsers, which is often perceived as a shortcoming. The possibility
of exploiting the web content (as an enormous repository of knowledge) in a ‘computer-
understandable’ form would clearly be a big leap forward. By ‘computer-understandable’ we
of course do not mean the mere capability to parse and display web pages (i.e. ‘execute’ their
code) to the user, as the browsers only care of a tiny, fixed set of low-level formatting features.
In order to transform the web content into a semantically structured representation, more
sophisticated tools are needed.

In this chapter, we briefly discuss three substantially different technologies that, in a sense,
aim at delivering the content of the web in a structured form suitable for software tools rather
than just for humans. We also mention their mutual relationships as well as their role in the
Rainbow project (as principal subject of this thesis).

1.1 Web Information Extraction and Mining

The task of transforming textual documents to structured (say, database) representation has
been addressed earlier than the WWW appeared. There had been an important community
that aimed at practical discovery of concepts and relations from especially news articles,
focusing on information with military/security impact (terrorist attacks, accidents etc.) or
business events. This community concentrated around the Message Understanding Confer-
ences1 (MUC). The discipline was eventually named information extraction (with acronym

1http://www.itl.nist.gov/iaui/894.02/related projects/muc/
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12 CHAPTER 1. HOW TO MAKE THE WEB ‘COMPUTER-UNDERSTANDABLE’?

IE), and as it most important components, the following were typically considered:

1. Discovery of named entities such as names of persons, organisations or locations

2. Discovery of relations among these entities, e.g. that of a person being employed by an
organisation

3. Discovery of scenarios, e.g. that of a company merging with another company thus
becoming a third company, on a particular date.

With the growing amounts of HTML pages, it became evident that the web could be an even
more important target for IE than traditional news resources. In addition to (mostly shallow)
linguistic techniques previously employed in plain-text IE, there was a brand new option: to
take into account the structure of HTML tags, which was, in some cases, almost as regular
as that of databases. As soon as the delimiters and the semantic of individual ‘fields’ are
established, content can be extracted and stored into e.g. a relational database in a straight-
forward manner. This was the idea of wrappers [9, 40, 43], where the semantic of ‘fields’
is typically identified by a human while the recurring HTML structures are automatically
discovered by a software tool, within a feedback-looping interactive session.

Wrappers are, currently, a stable technology with a number of commercial applications.
However, as they rely on the HTML structure that varies from one page to another, they
are only efficient for very large pages/sites (e.g. encyclopedias) or frequently updated pages
(e.g. news). For smaller pages, the benefits of automated extraction would not oughtweigh
the cost of creating the wrapper. In addition, wrappers fail if the HTML code lacks in
regularity. Therefore, alternative approaches appeared that aim at extracting useful content
from unseen pages, taking advantage of various features including terms, punctuation as well
as HTML tags. Their underlying principle is inductive learning of patterns describing the
typical content as well as context of target information. The patterns may have the form of
symbolic rules [18, 71] or e.g. probabilistic models [47, 54]. Learning-based IE tools have
to be provided with a collection of labelled examples, i.e. typically pages with manually
inserted semantic tags indicating the position of target information. As manual labelling is
rather tedious, there have been attempts to eliminate it via statistical bootstrapping [55, 66]
or via reuse of structured information available on the web itself [11, 17, 19].

Beside IE, there are also other data analysis techniques that were originally developed for
plain text documents but soon became important in the context of the WWW. Prominent
ones are classification and clustering. Classification is similar to information extraction in the
sense that it aims at discovering the ‘semantics’ of textual—or non-textual—objects. This
‘semantics’ is however limited to assigning a class to the whole object given as input (in
contrast to IE, where we do not know a priori the location of important information). As
far as clustering is concerned, it ‘only’ results in groups (or hierarchies) of objects that are
somehow (possibly, semantically) related. In order to discover some explicit semantics of the
clusters, extra steps are needed.

Apart from techniques originally developed for the analysis of documents, there are also
techniques borrowed from other areas of data analysis. For example, association mining
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was first used for knowledge discovery from tabular data, and only then transformed to text
mining (for frequent associations among terms) and then straightforwardly to web mining.
Graph analysis had been used in many disciplines before but the huge structures of web
hyperlinks recently became one of its primordial targets.

It might be useful to distinguish the notions of deductive vs. inductive web mining (though
their boundary is not always clear). The deductive web mining (DWM), first introduced in
[84], covers all activities where pre-existing patterns are matched with web data, be they of
textual, graph-wise or, say, bitmap nature. DWM thus subsumes web information extraction,
and differs from inductive web mining (such as the previously mentioned association mining
in text), which aims at discovery of previously unseen, frequent patterns in web data. This
does not mean that the ‘pre-existing patterns’ in DWM have necessarily been hand-crafted:
inductive learning of patterns (or analogous structures/models) is merely viewed as an activity
separate from DWM (‘reasoning’).

In the Rainbow project, information extraction and other (mostly deductive) web mining
tools have been developed. Most of them are described in section 3.

1.2 Semantic Web

The idea of semantic web is to use the web infrastructure for storing and retrieving structured
information and knowledge, which can subsequently be used for formal reasoning. Abundant
literature has recently been published about the semantic web current state and prospects
(e. g. the monographs [6, 27, 76]), so we will limit ourselves to a very brief and simplified
description. The current language for semantic web data is RDF 2, which allows to express
triples in the form “subject has object as value for property”. Subjects, predicates and (most)
objects are web resources identified with a URL. The vocabulary extension of RDF, called
RDF Schema (RDFS) allows to define classes of resources and relationships among them.
RDFS can be viewed as a simple ontology3 language; for more inference-oriented applications,
it can be extended with the constructs of the Web Ontology Language (OWL). OWL allows to
specify relatively complex ‘axioms’, for example, to define necessary and sufficient conditions
valid for all individuals that are members of a given class. Using the axioms, reasoning tools
based on description logics are able to check the satisfiability of classes and to derive implicit
subclass-class links. Finally, the upmost layer of the semantic web currently supported with
formal languages (especially, SWRL4) is the rule layer. Rules allow additional inferences,
mainly based on Horn logic.

While the initial concept of semantic web assumed manual creation of knowledge annotations
(in RDF), most recent research efforts are aimed towards large-scale automated [17, 21] or at
least semi-automated [34] annotation of websites. Automation of the annotation process is
typically based on IE techniques mentioned above. An alternative is to generate annotations
from the same database resources that have been used to generate this HTML code [57,

2http://www.w3.org/RDF
3For a somewhat more thorough account of the notion of ontology see chapter 6.
4http://www.daml.org/2003/11/swrl
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91]; this approach is faster and more reliable but only works for web pages generated from
databases and requires access to those databases. Extraction of structured information from
the text or other resources can actually be viewed as ‘ontology population’, i.e. providing
instances of classes and relations from the ontology.

In Rainbow, current semantic web languages have been explicitly used in the bicycle infor-
mation project, where information extracted from the websites was converted to RDF based
on an RDFS document (ontology), see section 4.3.

1.3 Web Services

Althougth web services5, strictly spoken, are not necessarily concerned with the ‘ordinary’
(HTML-based) web, we mention them here as they represent a sort of alternative—but also
complement—to the technologies described above, i.e. to information extraction and to
semantic web. The principle of web services is that of distributed computation; in contrast
to earlier approaches for remote calling among procedures, such as CORBA6, their interface
relies on relatively transparent (though verbose) XML-based languages. In addition, they are
explicitly meant to be advertised on the web, in the form of UDDI descriptions7. This gives
web services a degree of ‘openness’ unmatched by previous approaches.

In many situations, web services can side-step the problem of machine-processability of web
content. Instead of semantically annotating the content of a large and highly structured
page, we can create a web service that provides the same information (from the underly-
ing database) dynamically on request from the client. Moreover, web services can provide
the results of complex parametric calculations that are impossible to be stored in semantic
annotations beforehand. On the other hand, web services as such cannot replace semantic
web annotation when the user needs to automatically integrate information from multiple
distributed (possibly, small) resources that have first to be discovered.

Other two problems of (original) web services is their stateless nature, and the difficulty of
discovering the appropriate service in a large distributed WWW environment: the search
in UDDI repositories so far relied on keyword matching or navigation in simple hierarchies.
The first problem is typically overcome by combining multiple simpler services into a more
complex application. Service composition can be carried out via manual programming (this
is mostly the case in commercial applications) or more automatically. The latter option relies
on semantic annotations similar to annotations of web page content. Semantic annotation of
web services also represents the solution to the second problem, that of discovering unseen
services on the web. Semantically annotated, discovered, composed and executed web services
are simply called semantic web services [52, 62, 67]. As the provision of semantic annotations
for web services becomes, with the growing number of such services, similarly tedious as the
annotation of web page content, IE-based approaches recently appeared [36, 68].

5http://www.w3.org/2002/ws
6http://www.corba.org
7http://www.uddi.org
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In the Rainbow project most tools have been implemented as web services. Furthermore,
semantic web service technology (namely, automated annotation and composition of such
services) has been investigated, see section 8.4.
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Part I

Rainbow : Web Analysis via
Reusable Services and Data
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Chapter 2

History of the Rainbow Project

2.1 Initial Motivation

The way information is presented on the web typically combines multiple types and represen-
tations of data. Free text is interleaved with images and structured lists or tables, pages are
connected with hyperlinks, labelled with URLs (often containing meaningful tokens) and en-
dowed with explicit meta-data (in specialised tags). Different methods of web data analysis,
focusing each on a different data type/representation, may provide complementary and/or
supplementary information. Reducing the analysis on a single method, which is typically
done in specialised text categorisation or information extraction projects, may thus lead to
significant information loss. On the other hand, a monolithic application encompassing many
methods would be impossible to maintain (in view of permanent changes in web data stan-
dards and conventions) as well as reuse in different domains. The only solution thus seems to
be to combine multiple, relatively independent, web-analysis services based on diverse princi-
ples (statistics, linguistic, graph theory etc.) and equipped with hand-crafted or inductively
trained knowledge bases.

This situation was starting point for the Rainbow project; in the rest of the chapter, we give
an overview of this project according to its characteristic time periods. Most partial projects
and achievements mentioned in this section are elaborated on more thoroughly in the rest of
the thesis.

2.2 First Phase: Infrastructure and Ad-Hoc Tools

The Rainbow project started in 2001 as an informal joint venture of a group of researchers
and students at the University of Economics, Prague. Their joint interest was the rich but
heterogeneous and unreliable content of the WWW, in particular, that of websites of smaller
companies. In the first phase of the project (2001–2003), the methods and tools were mostly
designed for non-specific business websites. There were two main implemented outcomes:
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• A method for extraction of ‘company profile’ sentences based on lexical indicators dis-
covered via statistical analysis of web directory headings and associated pages, see [38]
and section 3.1.

• A method for discovery of navigational structure of company websites, based on graph-
theoretical analysis of local link topologies, see [98] and section 3.4.

Besides, less sophisticated tools for e.g. page classification based on URL strings (see sec-
tion 3.5) or for collection of the content of selected META tags (see section 3.6) were devel-
oped. The overall web service infrastructure was also built in this phase, as well as a simple
result browser, which eased manual experiments combining multiple tools [80]. The state of
the project in the end of the first phase was summarised in [82].

2.3 Second Phase: Extraction Tools, Bicycle Application and
Knowledge Models

In the second phase (2003–2005), the project was undertaken with support of the CSF grant
no. 201/03/1318, in collaboration with the Technical University of Ostrava and the Vrije
Universiteit Amsterdam (as foreign partner). In the course of this phase, a more restricted
area was chosen for experiments, namely, that of websites offering bicycle products. The main
(implemented) achievements were:

• An information extraction tool employing Hidden Markov Models and a ‘wrapper on-
tology’ for extraction of bicycle product offers from online catalogues, see [45] and
section 3.2

• A collection of tools for image analysis, based on singular value decomposition (SVD),
colour histograms and image dimensions, see [46] and section 3.7

• A procedural application that calls individual analysis tools, collects results and converts
them to the RDF format (as standard language of the semantic web), see [88] and
section 4.2.2

• A result repository1 with simple HTML interface allowing for end-user search and nav-
igation, see [87] and section 4.3

• By the collaborating group at VSB-TU Ostrava, the text-and-XML indexing and query
tool AmphorA has been adapted for provision of source data using the web service
technology [3].

A general diagram of the implemented architecture is at Fig. 2.1.

Another stream of research focused on abstract descriptions of analysis tools. Different types
of knowledge models were subsequently developed:

1Based on Sesame, see http://openrdf.org.
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Figure 2.1: Diagram of the Rainbow architecture

• A four-dimensional descriptive framework called TODD (for task-object-data-domain
as its four dimensions)

• A collection of ontologies capturing various aspects of the web space

• A collection of problem-solving methods defining different ways of solving the tasks of
classification, extraction and retrieval.

The coverage of the models was tested through re-describing real (own as well as others’)
applications in a semi-formal language [84]. Furthermore, simulations of automated compo-
sition of more complex applications from simple components were carried out for a specific
task of pornography classification [85, 86]; component simulations were derived from real
tools developed within a PhD thesis [95].

2.4 Future Plans

As the exploitation of web content and structure is by far not a resolved problem, the moti-
vation for extending the outcomes (and possibly, duration) of Rainbow project is high. The
most interesting research goals can be summarised as follows:

• To automatically build web analysis applications on the fly, using ontological descrip-
tions of individual tools
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• To effectively combine inductively learnt information extraction models with wrapper
ontologies, for newly addressed domains.

• To make full benefit of the available XML indexing and querying technology as pre-
processor to knowledge-based analysis, capable of providing an appropriate XML envi-
ronment to the knowledge-based web analysis tools.

We envisage to elaborate on these issues in the framework of several newly commenced EU-
funded projects.

Additional bibliography for the project as well links to implemented tools can be found at
http://rainbow.vse.cz.



Chapter 3

Web Analysis Methods in Rainbow

Although the main focus of this thesis is the reuse of web analysis methods (and models),
an important part of the Rainbow project has been original development of analysis methods
and tools. The actual developers were different project team members, mostly undergraduate
or PhD students. Some of them worked under direct supervision of the author, while other
were only indirectly influenced by the author as Rainbow coordinator. Namely:

• Experiments with indicator learning and company profile extraction (section 3.1) were
carried out by Martin Kavalec, as part of his PhD thesis

• Application of statistical method on information extraction from product catalogues
(section 3.2) is the topic of PhD thesis of Martin Labský

• A motivating experiment discussed in connection with the visual pattern method (sec-
tion 3.3) was carried out by Jǐŕı Bráza

• Analysis of webgraph of company sites (section 3.4) was the subject of two subsequent
MSc theses: by Martin Sajal and by Filip Volavka; Filip was author of the ultimate
implementation

• The web service for URL-based classification of documents in company1 websites (men-
tioned in section 3.5) was implemented by Vladimı́r Vávra

• The web service oriented on explicit meta-data and the experiments carried out in this
respect (section 3.6) are due to Pavel Kupka, being part of his MSc thesis

• Finally, various experiments with image analysis (section 3.7) were carried out by
Miroslav Vacura, Pavel Praks and Martin Labský.

The descriptions and results of most methods were previously published as conference or
workshop papers. In this chapter, all of them are briefly presented in separate sections of
varying length.

1The earlier experiments with generic websites were carried out in collaboration with Petr Berka.
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3.1 Extracting Company Profile Using Lexical Indicators

The goal of this partial project2 was relatively modest: to extract information about (mostly
generic) products, services and areas of competence of companies, from the free text chunks
embedded in web presentations. For this sort of information, an abundant reusable resource
are web directories such as Yahoo! or Open Directory. We based our experiments on the
‘Business’ branch of Open Directory (http://dmoz.org). Both the hierarchy of the directory
headings and the categorization of links listed in each node are valuable sources of information.
From the categorization of web links we can obtain labelled training data for information
extraction, while the hierarchy could be used as source for building a (lightweighted) ontology
of the domain corresponding to the given branch. The latter issue is subject of section 7.4.

Mining Indicator Terms Through Directory Headings

The general description of the company profile, area of competence, products and services
is usually not too extensive but stylistically well-formed. This favourises the use of linguis-
tic techniques, in contrast to surface techniques (such as regular-expression-based), which
are often used for information extraction from idiosyncratic, abridged documents (e.g. ad-
vertisements or medical records). Our assumption is that the directory headings (such as
.../Manufacturing/Materials/Metals/Steel/...) coincide with the generic names of
products and services—let us nickname them informative terms here—offered by the owners
of the pages referenced by the respective directory page. By matching the headings with
the page full texts, we obtain sentences that contain the informative terms. The terms sit-
uated near the informative terms in the syntactical structure of the sentence are candidates
for indicator terms, provided they occur frequently on pages from various domains. The
resulting collection of indicator terms can be, conversely, the basis of extraction patterns for
discovering informative terms in previously unseen pages.

The knowledge asset embedded in web directories is the judgement of human indexers who
have assigned the pages under the particular heading(s). Naturally, informative terms on the
page need not always correspond to the existing directory headings, e.g. due to synonymy.
As consequence, our method will extract (without the help of a thesaurus) only a fraction of
the sentences with informative terms. This however does not disqualify the method, since,
in this training phase, we aim at discovering indicator terms rather than at identifying the
informative terms themselves. The small degree of completeness of the method is actually
compensated by the hugeness of the material available3 in the directories. Namely, the
‘Business’ subhierarchy of Open Directory that we have exploited in our experiments points
to approximately 150,000 pages overall, each of these containing the ‘heading’ terms (from
the referencing node or one of its ancestors) in two sentences, on the average.

We tested the training phase of our method on a sample of 14,500 sentences4 containing the

2See also papers [38] and [39].
3As we dispense with manual labelling, processing a larger sample of data is merely the matter of computer

time/storage.
4I.e. about 5% of the total of such sentences.
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‘heading’ terms. The syntactical analysis has been carried out using the free Link Grammar
Parser5[70]. Our working hypothesis was that the abovementioned indicative function is, in
most cases, conveyed by verbs (and verb phrases). Therefore, in the initial experiments, the
verbs that occurred the closest (in the parse tree) to informative terms have been counted,
arranged into a frequency table, and ordered by ratio of their relative frequency of occurrence
near some informative term to their relative frequency in general. Eight6 most promising verbs
have been chosen for the experimental collection. Most of these are likely to be associated
with informative terms, e.g. ‘our assortment includes. . . ’, ‘we manufacture. . . ’, ‘in our shop
you can buy. . . ’.

To test the precision of extraction based on these indicators, 130 sentences containing some
indicators were randomly selected and each of them was manually labelled. The labelling
amounted to the subjective estimation whether the sentence contains the target informative
terms or not. This is sometimes difficult—e.g. due to missing context, special terminology
and domain specific product names; see for example the sentence:

We are equipped to run any grade of corrugated from E-flute to Triplewall, in-
cluding all government grades.

Therefore, some unclear sentences were labelled with ‘?’ and then counted once as negative
and once as positive test cases. Some sentences contained the company name but no usable
information on the products, e.g.

Industrial Metals Inc. is committed to provide you with exceptional service.

Although named entities are often valued in the information extraction field, we consid-
ered these sentences as negative test cases, too, since we focus on generic names of prod-
ucts/services or of their providers. The testing results are in Tab. 3.1. Together with some
ad-hoc inspections, they suggest that some general7 verbs–such as ‘use’ or ‘include’–need to
be extended to more complex phrases, possibly again via selecting the neighbouring terms
with frequent occurrence. Also, clearly, certain nouns and noun phrases could play the role
of indicators, too.

Due to the tedium of the abovementioned manual labelling, we are not able to measure
directly the coverage of a collection of indicators: this would amount to considering the full
set of sentences in the selected sample of web pages. An indirect measure of coverage, which
can be obtained automatically, is the number of pages in the sample that contain one or
more indicators from the collection. On the pages directly referenced by directory nodes,
this measure was rather low, between 10-20%; however, if we manually pre-filtered out pages

5The choice was motivated partly by the immediate availability of the parser, partly by the hypothesis that
a linked-based parser could support the presumed ‘navigation’ over the dependency structures better than
parsers based on constituent grammars.

6We hope to build a more comprehensive collection using a larger sample of pages, and possibly more
domain-specific collections for sub-branches of ‘Business’.

7Even the verb ‘to be’, which has no significance of its own, could presumably be the starting point for
finding useful indicator phrases.
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Table 3.1: Test of the indicative verbs
indicator − ? + precision
include 8 4 18 60–73%
provide 9 3 28 70–78%
offer 6 1 21 75–79%
specialize 0 1 18 95–100%
(other) 3 5 5 38–77%
total 26 14 90 77–80%

with no or minimal free-text content (such as intro or menu pages), the proportion increased
to 70-80%: the fact that this result was obtained for a collection of eight indicators suggests
that the cross-domain variability of these terms might be relatively limited. Note that even if
a set of indicators could not directly be used for systematic filling of information extraction
templates due to low coverage, it could still be acceptable for the discovery of new terms for
the ontology of products and services, see section 7.4.

Related Work

Li, Zhang and Yu also use the Link parser and describe in [48] how to learn mapping from
the link grammar to RDF statements. Their work shows advantages of link grammar over
constituent grammar for this task and demonstrates feasibility of this task.

While directories have already been used for learning to classify whole documents, by Mladenic,
[56], their use for information extraction seems to be innovative.

There is also some similarity to Brin [11], which targets on automated discovery of extraction
patterns using search engines. The patterns can be used to find relations, such as books,
i.e. pairs (author, title). However, the patterns are simply based on characters surrounding
the occurrence of the investigated relation. In comparison, we aim at finding less structured
information, for which such simple patterns wouldn’t be sufficient.

Finally, the use of bootstrapping and other statistical methods for information extraction has
also been presented e.g. in [55] and [66].

3.2 Statistical Extraction from Product Catalogues

Product catalogues are the heart of most company websites. Although the number of compa-
nies relying on form-based (sometimes even web-service-based) access to catalogues is slowly
increasing, small and medium companies typically find plain HTML pages (with navigational
access) as the most rational option. The information about product names, properties and
prices is structured to tables, lists or paragraphs, which can be analysed by information
extraction (IE) techniques. The best known IE projects focusing on product information is
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Figure 3.1: Samples of annotated training data

CROSSMARC8.

Since the structure of catalogues is rather diverse from one to another, and emphasis is
put on attractive presentation rather than on document logic, wrapper-based approaches
[40, 43], which only work well on database-like pages with globally-regular structure, can
hardly be applied. Likewise, the catalogues do not contain continous, linguistically sound
text, which could be processed by traditional NLP techniques such as complete parsing. As
the most feasible option then remains IE relying on complex inductively trained models, be
they statistical or rule-based.

As typical in IE, we have to solve at least two constituent problems: identification (annota-
tion) of partial data items9 and their assignment (as ‘slots’) to instances of ‘product offer’
class from an underlying ontology. As discussed below, we so far used a trained statistical
model for the former, and a simple heuristic algorithm for the latter.

Experimental Data

As training and testing data for our extraction models, we manually annotated 133 product
catalogues randomly chosen from bike shop websites in the UK. The documents were picked
from the Google Directory node Sports-Cycling-Bike Shops-Europe-UK-England. Each doc-
ument contains from 1 to 50 bike offers; there were more than 900 instances of ’bike offer’ in
the data, overall. Manual annotation, carried out by means of simple interactive tool made
for this purpose, covered different ’slots’ of ’bike offer’, distinguished by different colours; see
examples of annotated pages at Fig. 3.1. The six most frequent slots are enumerated in the
first column of Table 3.2. The labelled collection is available from http://rainbow.vse.cz.

8http://www.iit.demokritos.gr/skel/crossmarc
9They correspond or are analogous to traditional named entities (cf. the MUC conferences, http://www.

itl.nist.gov/iaui/894.02/related projects/muc).
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Table 3.2: 10-fold cross-validation results
Slot Recall Precision # instances
name 77.9 78.6 83.63 63.5 65.6 62.1 927
price 98.9 99.1 98.8 89.5 88.9 86.9 971
picture 69.0 89.6 359
speed 86.8 93.6 186
size 83.2 93.7 173
year 98.1 70.0 160

Annotation Using Hidden Markov Models

Hidden Markov Models (HMMs) are finite state machines augmented with state transition
probabilities and lexical probability distributions for each state [65]. Text is modelled as
a sequence of tokens (in our case including words, punctuation and formatting symbols).
When applying an HMM to text, the given sequence of tokens is assumed to have been
generated by that model. Provided some states of the model are associated with semantic
slots (to be filled in with extracted text), we are interested in recovering the most probable
state sequence that would have generated our text, and thereby obtaining its most probable
semantic interpretation. This task is effectively solved by the Viterbi algorithm [65].

Before applying HMMs, we transformed each document into a sequence of HTML block
elements (e.g. paragraphs, table cells) that directly contain potentially interesting data (in
our case, any text or images). Furthermore, certain inline HTML tags were substituted with
abstract tag classes, e.g. <important> was used in place of <b><u><em><big><font>, and
several common web page patterns were identified with manual rules and replaced using
dedicated symbols, e.g. <addtobasket> was used in place of forms that satisfied a set of
manually-defined rules.

Experiments were carried out using three different HMM architectures denoted as ‘naive’,
‘word N-gram’ and ‘submodel’; descriptions of the architectures are in [87]. The results
presented in Table 3.2 for the name and price slots were obtained using the naive, word
n-gram and submodel approaches respectively. The remaining slots do not exhibit significant
internal structure and currently we have their results just for the naive model. Precision
and recall was measured on a per-token basis. All results were obtained using 10-fold cross-
validation on the whole set of labelled 100 documents, with the presented values averaged.
Both non-naive approaches to modelling slot values however suffer from data sparseness,
which probably causes the degradation of precision in some cases.

Instance Composition

While the size of data was acceptable for training HMMs for discovery of individual slots (such
as bike name, price or picture), we would need much more data to learn how to compose them
into whole instances of product offers—this task that can be, in the IE terminology, charac-
terised as template extraction. Clearly, it is only this task that makes the whole extraction
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effort sensible.

In the first approximation, we are using a rather toy algorithm for grouping the labels pro-
duced by annotation. The algorithm processes annotations sequentially and exploits infor-
mation on required/optional slots and their allowed cardinality, defined by means of a tiny
‘presentation’ ontology. Essentially, a slot (i.e., annotated item) is added to the currently
assembled (bike) instance unless it would cause inconsistency; otherwise, the current instance
is saved and a new instance created to accomodate this slot and the following slots. Despite
acceptable performance on error-free, hand-annotated training data, where the algorithm
correctly groups about 90% of names and prices, this ‘baseline’ approach achieves very poor
results on automatically-annotated data: on average, less than 50% of corresponding names
and prices are matched properly, often for trivial reasons. We plan to replace the ‘toy’ algo-
rithm with a more sophisticated version, which would be reasonably robust on automatically
annotated data. Namely, the most critical problems of the ‘baseline’ algorithm are connected
with missing slots, multiple different references to a single slot, and with transposed tables;
for some of these, partial solutions have recently been suggested by IE research (e.g. [19, 23])
and could be reused.

Related Work

Recently reported IE tools for semantic web are S-CREAM [34] and MnM [97]. They pay
significant attention to efficient coupling of training data mark-up and subsequent automated
extraction of new data. Armadillo [19] is probably the most advanced information extrac-
tion tool explicitly addressing the semantic web standards such as RDF. Its strong point is
bootstrapping, which minimises the human annotation effort. In contrast to most previously
published results, we focus on company websites; presumably, they exhibit less transparent
logical structures and fewer data replications than e.g. computer science department pages
or bibliographies, the domains most favoured by web IE applications. CROSSMARC [63]
focused on product sites, it however did not use a presentation ontology (it rather relied on
terminological ontologies and NLP techniques), and did not seem to pay particular attention
to presentation of extracted results in semantic web format (see section 4.3).

3.3 Extraction of Triples based on Visual Patterns

In this section we present a rather ambitious approach to web IE. To the difference of previous
ones it has only been designed at conceptual level and not yet implemented (apart from a
simple motivating experiment). It is however one of most promising ones for future work.
The key ideas are: to decompose the mapping between HTML source code and ‘semantic
messages’ into multiple parts, and to employ a generic data model—the (RDF–like) SPO
triple.
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Multi–Layer Mapping

Since the choice of HTML tags is always constrained by the outlook in the browser, we propose
to model the outlook (in terms of ‘visual’ relations and properties such as ‘above’, ‘tabular–
left–to’, ‘emphasized’ or ‘indented’) as an intermediate layer between the HTML source code
and the semantic model. Though the separated mappings are still n–to–m, the n, m are likely
to be smaller than if the HTML structures were directly matched with ‘semantic messages’10.
To further reduce complexity, we identified a single, very simple model applicable on the
majority of messages: the subject–predicate–object (SPO) triple. It expresses that “the value
(i.e. object) of property (i.e. predicate) X for entity (i.e. subject) Y is Z”. The wide usability
of this structure seems to be endorsed by its adoption for the Resource Description Framework
(RDF)11.

The leftmost part of Fig. 3.2, relating HTML source patterns to visual patterns, represents
by itself a hard problem we do not address here. The middle part maps visual patterns to
the SPO triple: the object part of HTML code is likely to ’follow’ (in a varying visually–
topological sense) the predicate part, e.g.:

• (X: short font–emphasized text) above (Y: short non–font–emphasized text) → (X=P,
Y=O)

• (X: short text) followed–with (colon) followed–with (Y: short non–font–emphasized text)
→ (X=P, Y=O)

• (X: short font–emphasized text) tabular–left–to (Y: short non–font–emphasized text)
→ (X=P, Y=O)

The subject is usually not referenced in HTML code; typically, it is the company itself or
one of its products/services, which can be expressed in RDF e.g. by means of an anonymous
resource:

<rdf:Description about="http://www.XY.com">
<dc:References rdf:resource="_anon1"
a:Email="info@XY.com" />

</rdf:Description>

<rdf:Description about=
"http://www.XY.com/catalog#item3">
<dc:References rdf:resource="_anon2"
a:Price="800" />

</rdf:Description>

The rightmost part of diagram, relating the generic model to specific messages, is treated in
more detail in the following section.

10Earlier we empirically identified common ‘messages’ on business sites, such as company profiles, contact
info or catalogues.

11http://www.w3.org/RDF/
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Figure 3.2: Multi–layer mapping

Configuring the SPO Model

The generic SPO model is reflected in the structure of SPO extractor (SPOE), the universal
model we propose for detection and extraction of specific types of semantic messages:

Definition 1 An SPO extractor is a tuple (S, P, O, V ), where

• S (the subject specification) is a logical expression.
• P (the predicate specification) is a pair (Pred, Lex), where Pred is a semantic predicate

and Lex either a lexical pattern or ‘nil’.
• O (the object specification) is an information extractor.
• V specifies the subset of visual patterns12 applicable on the given extraction task.

Indicative lexical patterns are understood as clue for identifying the HTML code correspond-
ing to P ; they may however be left out—e.g. an address at a company homepage could be
considered as ‘contact address’ even without preceding pattern such as ‘Contact:’. Semantic
predicates should be defined as ontological properties, i.e. valid RDF resources. The nature
of information extractors may vary from e.g. identity function (‘pick up the whole content
of element’) to complex linguistic or statistical models. The logical expression specifying the
subject could be just a default value such as ‘current page’ or ‘website homepage’, or could
return different values depending e.g. on the semantic class of current page.

A simple algorithm for discovery of ’implicit RDF statements’ for semantic predicate Pred
in a given HTML page Pg may, for example, look like this (looping omitted for brevity):

1. Let (S, P,O, V ) be an SPOE, P=(Pred, Lex), O=Extr.
2. Find in Pg an occurrence of Lex (possibly using a fulltext index) in the form of XPath

address Addr.
3. Find in Pg an instance I of a visual pattern V is ∈ V , such that the P–part of I contains

Addr.
4. Apply Extr on the O–part of I, yielding Obj.
5. Set Subj to the resource specified in S.

12In the sense of the previous section; a single library of visual patterns could be reused by different SPO
extractors.



32 CHAPTER 3. WEB ANALYSIS METHODS IN RAINBOW

6. Return the RDF triple (Subj, Pred, Obj).

Small ‘predicate–object’ patterns could also be embedded in the code of the ‘object’ part of a
larger pattern: e.g. ‘price’ in a ‘catalog’ or ‘e–mail’ in ‘contact info’. This could be modelled
by meta–predicates, and exploited by a more complex, recursive algorithm.

Experiments on Data

In the first try we focused on contact information data, i.e. postal and/or email address, see
Table 3.3. We randomly selected 101 links from the Business category of Open Directory13,
and visually examined the HTML code and outlook of the respective websites. We found
some form of contact information within 60 sites: either at the main page or at a page
accessible via an appropriately labelled link (such as ‘Contact us’ or ‘About us’).

For all occurrences of address, we assigned the possibility of their automatic extraction to
one of the categories:

1. ‘Inextractable’: contact info as image, or hidden in text without any indication as to
what the address could be, where it begins and/or ends.

2. ‘Extractable using a lexical pattern’: a lexical indicator (such as ‘Mail:’ or ‘Contact:’)
preceded the address, in most cases inside its own (‘block’ or at least ‘inline’) HTML
element.

3. ‘Extractable but no external indication’: no lexical indicator was present but the address
was structured enough to be possibly extracted using advanced (statistical) methods;
the HTML structure could at least help to estimate the boundaries.

The simplest approach to e–mail extraction would surely be to employ a wrapper class for
<a href="mailto:XXX">: this would work in approx. 50% of cases. When, however, the
address does not have the form of hyperlink and its end coincides with that of an appropriate
HTML tag, an SPO extractor (using lexical indicators such as ‘E–mail:’) would still work
(11 % of cases).

A by–product of our survey was a small statistics of use of explicit metadata. Some form of
it occurred on nearly half of the pages, structured metadata (Dublin Core) however appeared
just once, and only 4 pages contained metadata with contact information: this manifests the
importance of WebIE. For contact information, ‘implicit RDF metadata’ on output might
look like

<rdf:Description about="http://www.XY.com">
<dc:Creator>Joe Bowen</dc:Creator>
<imp:email>info@XY.com</imp:email>
<imp:addr>42 StreetX, Bigcity, 111 54</imp:addr>
<imp:phone>1-800-123-456</imp:phone>

</rdf:Description>

13http://dmoz.org/Business
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Extractable address 50 83 %
– using lexical indicators (SPOE) 21 35 %
– only using advanced methods 29 48 %
Non-extractable address 4 7 %
Contact info w/o address 6 10 %
Extractable email: 38 63 %
– using a simple ‘mailto:’ wrapper: 31 52 %
– using lexical indicators (SPOE): 27 45 %
– only using lexical indicators (SPOE): 7 11 %
Contact info w/o email 22 37 %
Any metadata present 29 48 %
Metadata with contact info present 4 7 %

Table 3.3: Results for the 60 sites with contact info available

and later be converted to ‘real–world’ facts.

Discussion

We hope that exploitation of SPO structures could focus extraction on promising parts of
the HTML code, and thus increase the accuracy and reduce the complexity of conventional
IE methods. The fact that same visual patterns (expressing the P–O relationship) could be
reused for a wide range of ‘semantic messages’ may alleviate the training of extraction models.
We could also use analogy with Hearst patterns [35] in free, linguistically contiguous text,
e.g. ‘such as’, which are often used to extract taxonomic or even non-taxonomic relationships
among concepts, and can be used to bootstrap further extraction [17].

Related Work

Visual patterns in HTML code or rendering have already been suggested for IE by several
authors. Their form was typically tailored to tree structures [15], tables [30] forms [28], or to
larger blocks of text obtained from scanned documents via OCR [33]. None of these projects
however proposed a generic triple-based model as ours.

3.4 Analysis of Webgraph of Company Sites

Topology-based web analysis (also known as webgraph analysis) is typically much faster
than other methods, since it deals with substantially smaller data (hyperlinks represented
as source-target pairs); those have often been collected in advance, in the site download
phase. However, it offers limited material for semantic interpretation unless combined with
other types of analysis, such as that of URL strings, free text, HTML code or metadata.
For example, for company sites, the role of page as ’hub’ in a topology may be positively
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correlated with its (HTML-based) classification as ’product catalogue’; the result obtained
by more sophisticated methods may thus be confirmed or questioned. We hypothesise that
topology analysis may be beneficial for two interconnected tasks: semantic classification of
pages, and identification of pages belonging to the same logical document. Analysis of data
suggested that most information for either task can be derived from the discovery of user-
oriented navigation structure. The assumption of existence of such structure represents quite
widely reusable ’prior knowledge’.

In the initial survey, we collected the topologies of 75 randomly selected company websites.
By their predominant structure, we distinguished the following types:

• Single file (i.e. page without links, or with outward links only)

• Hierarchy with limited connectivity of pages in the same layer.

• Hierarchy with complete connectivity of a set of sibling pages in the second, and possi-
bly subsequent, levels of hierarchy. The union of such sets will be denoted as navigation
structure (NS), since it enables easy navigation over mutually related topics; the indi-
vidual sets (possibly multiple ones at the same level, but each with a different parent
page) will be called NS components.

• Chain (sequence) of pages

• Sites committed to MM Flash (beyond the reach of our topology analysis).

Among the 47 NSs, 38 had their components only in the second layer of the hierarchy, the
remaining 9 also in one or more subsequent layers. Since the NS patterns were frequent and
conspicuous (could be determined by topology alone), we took their discovery as starting
point.

We only sketch the basic steps of the NS discovery algorithm. More details can be found in
[98]:

1. Collection of initial set I of candidate pages. Beginning from a start-up page, pages
referenced by links are iteratively added. Pages beyond the current server are not
considered.

2. Adjacency matrix and minimal-distance matrix of I is constructed. Depth of each page
is computed as minimal distance from the start-up page.

3. In each set of pages with same depth, NS components are subsequently sought, as sets
of at least three pairwise interconnected pages. Their union is output as the resulting
navigation structure.

A side-product of the algorithm is the compactness measure of the website, computed from
the minimal-distance matrix. It roughly expresses the accessibility of information, and thus
indirectly the quality of website design. As a follow-up step, a tentative form of website ’core’
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discovery, as a particular type of logical document, was also implemented. The ’core’ only
contains the pages that point to all pages from the NS. The algorithm has been implemented
as a collection of PHP scripts, with both HTML and web service interface. The former
also provides webgraph visualisation and displays statistical information (e.g. adjacency and
minimal-distance tables).

For an experiment, 42 sites of ’organisations offering products’ (nicknamed as OOP) were
randomly chosen from the ’Business’ branch of Open Directory . The size of the sites ranged
between 1 and approx. 200 pages, the average value was 52. For 20 of them (47.6%), a
NS was identified; most of the other sites, namely 15 (35.7%), consisted of a single page.
The NSs consisted of one (most often, always in depth 1) up to 9 components; the average
value was approx. 2. The average size of NS component was approx. 6, which corresponds to
’reasonable’ size of menu bar. Unfortunately, the website core discovery part of the algorithm
did not scale well to larger sites, since unacceptably many useful content pages were excluded.
More detail on the experiment can be found in [98].

Semantic classification of pages has been designed at informal level but not implemented.

Related Work

Attardi [8] uses topology analysis as filtering method for content-based page classification.
Links to frequently referenced pages are understood as ‘structural links’ and such pages are
not submitted to classification. This low-cost approach is however unapplicable to many
company pages as they may contain important information even on pages that belong to the
navigation structure. For small websites, all pages may even be eliminated. Mathieu and
Viennot [53] described the structure of the web using two different structures: link topology
as well as file system hierarchy (derived from local parts of URLs). They ordered 8 millions of
URLs according to the directory/file structure and computed the adjacency matrix. Clusters
along the diagonal of the matrix, such that most links from the cluster again lead to the
cluster, are understood as logical websites. The method is however sensitive to file system
structuring rules. Such rules are often disobeyed, and actual file system structure may even
be hidden behind ‘virtual URLs’.

3.5 URL-Based Classification of Web Documents

First experiments with classification of company URLs [79] were already carried out in the
context of VŠEvěd project [10], which was pre-cursor of Rainbow. The goal was to assign the
documents retrieved by the VŠEvěd meta-search engine into meaningful categories, without
the need of downloading their full text; earlier studies [73] indeed showed that humans can
make significant deductions about the content of URLs14.

14The situation however significantly worsened in the last few years due to massive proliferation of dynamic
web technology, which often obscurs the URLs.
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URL-Oriented Document Typology in VŠEvěd

We used three different viewpoints on web pages typology:

1. type of the document (TypD) - we adapted here the typology given in the Dublin Core
set of description elements [99] (recognised types are e.g. information about persons,
information about projects, bibliographical information etc.)

2. sphere of the document (TypS) - this typology roughly corresponds to first level domains
(e.g. academical domain or commercial domain)

3. technological type of the page (TypT) - this typology is based on syntactical elements
in the page (e.g. on-line forms, indexes).

The links could be grouped according to the types of pages, in VŠEvěd. The three basic ways
of grouping (that correspond to the three viewpoints on web pages typology) are extended
by so called ’waterfall grouping’. This option uses TypD as a first grouping criterion, links
with no recognised TypD are grouped according TypS and the remaining links are grouped
according to TypT.

Building the Knowledge Base

The heuristics that recognize different types of pages were based on an analysis of about
100,000 URLs pointing both to English and Czech servers. In order to obtain a large set of
generic URLs required for the initial frequency analysis, we exploited two sources and merged
(syntactically correct) URLs from both.

• We submitted extremely general (to say, “empty”) queries to search engines – e.g. in
the form +domain:com in the case of AltaVista, and extracted (by means of dedicated
text extractors) only the URLs of the “hits” returned.

• To eliminate the bias incurred by the particular structure of search engines indices, we
also scanned the cache of an HTTP proxy server.

The URLs have been parsed to their constituent parts (hostname, directories, filename etc.)
and to individual terms, abstract (e.g. calendar) concepts have been deduced from overly
specific data, and, finally, the resulting structured collections of terms and concepts have
been filtered by means of frequency analysis15, while discounting multiple occurrences of the
same term from the same server (for details see [79]). The (alphabetically reordered) lists of
terms and concepts served as a base for manual formulation of category-recognition rules.

We also performed a frequency analysis of terms occurring in the URLs and formulated rules
for terms with relative frequency above 0.05%. To have an idea of the relative frequencies of

15In addition to unigram analysis, bigrams have been examined, too. This has yielded e.g. the compound
terms “about us” or “yellow pages”.
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Table 3.4: Fragment of lists of terms and frequencies from directory path and filename

Directory occurrences % Filename occurrences %
about 0.17 about 0.33
access 0.15 ad 0.43
academic 0.12 all 0.32
ad 0.11 archive 0.16
admissions 0.05 art 0.22
ads 0.21 arts 0.14
all 0.11 banner 0.32
and 0.18 bar 0.18
archive 0.07 bar 0.18
archives 0.12 bio 0.26
art 0.19 blank 0.20
articles 0.08 black 0.12
... ...

terms within the sample, see the fragment from the beginning of the lists for both directory
and filename, at Table 3.4. We can hypothesise that the most frequent terms typically belong
to three semantic groups:

• terms related to the page category (in the sense studied in this paper)

• terms related to an (extremely general) subject topic

• terms with no semantic meaning of its own; they can however bring some information
if associated with other terms.

Problem of Ambiguous Terms

In the process of manual formulation of recognition rules, search engines have served again,
namely to verify the reliability of key terms. Special queries of the sort +url:<term> (or
+url:<term> -host:<term>) have been posed, and the lists of hits visually inspected (only
the first 20–30 per query, which should suffice to identify significant deviations from the main,
expected, meaning). Some very frequent terms, such as “art” (article, but also page about
art), “bio” (biography, but also page about biology), “cat” (catalogue, but also page about
cats) or “pub” (list of publications, publicity page, or page about restaurants) have thus
been labelled as “ambiguous”, and submitted to further processing. The disambiguation was
carried out using Inductive Logic Programming, and relied on textual snippets returned by
search engines. As this goes beyond web space analysis in ‘virgin’ state, we do not describe
it any further; details are in [81].
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Testing the Knowledge Base

We focused our experiments on testing the functionality of typological grouping of hits re-
turned by search engines queried by VSEved. At first, we used the same set of 28 queries that
were used to test the system Clever [16]. The queries are rather frequent english terms like
”alcoholism”, ”lyme disease” or ”stamp collecting”. VSEved used AltaVista search engine
to get the results, first 10 (most relevant) hits returned for each query were then grouped
both according single criterion (TypD, TypS and TypT respectively) and according to the
waterfall criterion. The second set of experiments was oriented on more specific queries. We
used as queries terms taken from titles of papers presented at the DATASEM’98 conference
(Czech conference on databases). We formulated 11 Czech and 11 English queries. Again,
we performed single grouping and waterfall grouping on results obtained when querying the
Czech search tools AltaVista and Kompas. The results of both experiments are summarised
in Table 3.5. Sections CLEVER, DATASEM CZ and DATASEM EN correspond to the three
sets of queries. We show both absolute and relative number of classified links. The rows
’single’ show number of pages in each typology (one page can belong to all three typologies),
rows ’waterfall’ show what was the first typology a page was classified. So. e.g. in the row
’CLEVER waterfall’ 154 pages were classified according to the TypD typology, from the re-
maining 120 pages 100 pages were classified according to the TypS typology, 5 pages were
only classified according to the TypT typology and 15 pages remained unclassified.

Dataset TypD TypS TypT Unknown
CLEVER: Single 154 242 16

Single (%) 56,2 88,3 5,8
Waterfall 154 100 5 15
Waterfall (%) 56,2 36,5 1,8 5,5

DATASEM CZ: Single 33 45 1
Single (%) 38,4 52,3 1,2
Waterfall 33 31 0 22
Waterfall (%) 38,4 36,0 0,0 25,6

DATASEM EN: Single 8 76 7
Single (%) 7,8 73,8 6,8
Waterfall 8 68 2 25
Waterfall (%) 7,8 66,0 1,9 24,3

Table 3.5: Tests of URL-based classification

Web Service Implementation

Later, a classifier specifically tuned to URLs of company websites was implemented using an
analogous approach. It is available as a component of the Rainbow system16. It has however
not been thoroughly tested on data, since the role of default page classifier was eventually
attributed to a Bayesian classifier, for the practical use in bicycle application.

16The web service interface is available at http://rainbow.vse.cz/doc/services/anaurlservice.html
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3.6 Cropping the Explicit Meta-Data

Explicit metadata embedded in META tags (or, ideally, RDF) are an important resource of
information in web pages, as they provide the most important information items about the
site content, which may be quite hard to obtain from the full HTML code. The main problem
is however their relative scarcity. By a the statistical survey17, the distribution of META tag
types was as follows: the keywords tag was present in 11.8% of the sample, description in
9.6%, generator in 7.5%, robots in 3.9%, author in 3.3%; all other tags had frequency below
1%.

The simple META tag ‘analyser’ designed within Rainbow was thus parametrised so as to
extract the content of keywords, description and author tags only (as generator and robots
are not related to the page semantics). The way of its integration into the visualisation
tool is shown in section 4.1.1, and an experiment considering META tags is described in
section 4.2.1.

At the time of the above mentioned survey (1997), RDF had not existed yet. However, with
the growing popularity of semantic web technology, the RDF annotations already present as
part of web pages should be taken into consideration during their automated analysis.

3.7 Analysis of Image Information

The analysis of image information was used, within the Rainbow project, as part of the
application on bicycle product catalogues, see section 3.2. All images used in our experiments
come from a collection of 133 HTML documents chosen from the Google Directory Sports-
Cycling-BikeShops-Europe-UK-England. Each document contains from 1 to 50 bicycle offers,
and about 61% of offers include a bicycle picture. There are typically 3–4 documents from
the same shop in the data. Together there are 1624 occurrences of 900 unique images18.
Sample images are shown in Figure 3.3.

In our data, most repeating images are advertisement banners and images used for page
layout. Of the 1624 image occurrences, there were 598 bicycle images (positive examples)
and the remaining 1026 images were considered negative. Positive examples of bicycle images
include those that were not part of any bicycle offer labeled for extraction.

Three different types of features were used for classification:

1. Image similarity based on Latent Semantic Indexing ; the image bitmaps were trans-
formed to vectors of features and reduced via Singular Value Decomposition, for more
details see [64]. The classification was done using the K-nearest neighbour approach
with respect to positively labelled examples. The error rate of the classifier was 26.7%.

17http://vancouver-webpages.com/META/bycount.shtml
18The image collection is available from http://rainbow.vse.cz.
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Figure 3.3: Sample images sorted by similarity to the first image

2. Image size modelled using a 2-dimensional normal distribution. The error rate of the
classifier was 6.2%.

3. Colour histogram constructed according to the so-called HSV colour space, yielding 162
different colour groups. The error rate of the classifier was 5.2%.

All results were measured using 10-fold cross-validation, where images were split so that
no images from a single HTML document could appear both in training and test data.
Tools from WEKA were used for actual classification based on multiple features of the same
type. Combination of different types of features is discussed in section 4.1.2. Details on the
experiment are in [45] and [46].



Chapter 4

Ad Hoc Integration of Rainbow
Methods and Tools

In this chapter we subsequently discuss the different ways of integrating analysis results in
Rainbow. We roughly divide them into two categories, denoted as horizontal and vertical
integration, respectively. They can be characterised as follows:

1. In horizontal integration (section 4.1), the outputs of multiple methods returned for the
same object in data are contrasted, compared, alternated or combined.

2. In vertical integration (section 4.2), the outputs of one method are used as input for
another method.

Finally, we devote a separate section (4.3) to an experiment with converting the results of
web site analysis to RDF and presenting them to the user in the form of navigational search
interface.

Note that a more sophisticated way of horizontal integration is outlined in Chapter 5, where a
general formal model is presented. Furthermore, a more advanced (especially, more flexible)
method of both horizontal and vertical integration, based on problem-solving methods, is
discussed in Chapter 8.

4.1 Horizontal Integration

As horizontal integration, we first (section 4.1) present a simple parallel display of information
obtained by different methods for the same physical page. This method, implemented by J.
Kosek, leaves the actual integration upon the user; it was developed for testing purposes, so as
to ease manual experiments with the tools in question. Second (section 4.1.2), we discuss our
experience with integrating multiple methods that are applied together on the same object,
namely, image; the bulk of the work has been done by M. Labský, P. Praks and M. Vacura.
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Figure 4.1: Screenshot of Mozilla with the Rainbow navigation pane

4.1.1 Parallel Result Display in Navigation Interface

A (testbed) navigation interface to the results of early Rainbow tools has been built in the
form of plug-in panel in the open-source Mozilla browser. Every time a new page is open in
the browser, the page is downloaded and pre-processed (provided it is not yet in the source-
page database), and the analysis modules are invoked. Their results are just displayed, no
integration is performed. Fig. 4.1 shows a screenshot of the browser equipped with the
Rainbow navigation pane. The sections of the pane correspond to the listing of ‘similar’
pages provided by the Google server (as an additional, external web service), to the content
of selected META tags (raw explicit metadata), and to the sentences provided by linguistic
analysis1.

The navigation interface was used e.g. for experiments presented in section 4.2.1.

1The presence of ‘offer’ (one of the ‘indicators’ found by web directory mining, see section 3.1) as the main
verb in the sentence was basis for its selection.
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4.1.2 Integration of Image Analysis Methods

For the bicycle product catalogue application, we built an image classifier that used all of the
features described in section 3.7: the similarity score, size score based on width and height,
and the 162-dimensional HSV histogram vector. We also tried to add the image’s occurrence
count within the same HTML document, since count above 1 seemed to be a good predictor
of the image not depicting a product. However, this feature was dominated by the other
features and did not bring further improvement.

The best performing classifier within the WEKA workbench was the PART decision list, with
an error rate of 2.6%. Results for all single-feature classifiers2 and the combined classifier are
summarised in Table 4.1.

Table 4.1: Image classification results
Similarity Size Size2 Histogram Combined

Error rate (%) 26.4 6.2 3.2 5.2 2.6

On our image collection, the classification results seem to be promising for the purpose of
further IE from web pages. However, good results are largely due to the collection’s specific
nature, which was especially exploited by the size- and histogram- based classifiers. For
most bike shop pages, product images tend to have specific sizes – we could identify one
cluster of larger product images that appeared in product detail pages, and another cluster
of smaller product images, typically found in product listings. Furthemore, most product
images seemed to have a similar ratio between their width and height, which could be well
modelled by the normal distribution utilised by the size-based classifier. On the other hand,
non-product images were often advertisements, web page graphics (such as logos, headers,
buttons or menus), and images of other products including “picture not available” images.

Advertisments often had standardized sizes, and only rarely resembled product images in size.
Page graphics (e.g. manufacturer’s or shop’s logos) sometimes matched product images in size,
however they were often distinguished by either the histogram or similarity classifiers. The
task of the histogram classifier was also relatively easy since most product images had a white
(or very light) background, and only a small portion was on dark backgrounds. The “hardest”
images in our collection were those of “non-bicycle” products, such as bicycle accessories
(often depicted together with a part of bicycle). For these images, the LSI similairity’s
contribution was most important.

4.2 Vertical Integration

During the experiments with Rainbow components, vertical integration also appeared. We
will first discuss the mostly manual experiment (done by the author of the thesis himself) with
locating pages containing general company descriptions with the help of URL analysis. Then
we will mention the procedural control structure for extraction of bicycle product information

2Size2 includes the original image width and height as attributes.
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(by O. Šváb), which implements and refines the former experiment. Note that the application
of image analysis as support for information extraction (section 4.1.2) can also be viewed as
vertical integration.

4.2.1 From URL Analysis to Extraction of Company Descriptions

In this experiment we focussed on the task of extracting general company descriptions (pro-
files) from websites of ‘organisations offering products or services’ (we therefore use the
acronym OOPS). The descriptions delimit the areas of expertise of the company and the
generic types of products and services. They can be presented as free–text paragraphs, as
HTML structures such as lists or tables, or as content of META tags such as keywords or
description3. The profile usually occurs either immediately at the main page of the site, or
at a page directly referenced by this page. The URL of such profile–page is very likely to
be ‘indicative’. This favourises ‘navigational’ access: rather than analysing exhaustively the
whole website, the link can be followed from the main page.

In our experiment, we randomly chose 50 websites, whose main page was referenced by
the ‘Business’ part of Open Directory4. Of these, 36 sites could be considered as directly
belonging to ‘OOPS’; other were multi–purpose portals or information pages. We exploited
the Rainbow system in its state to date (end 2002), i.e. the source data module to acquire
and pre–process the pages, the linguistic (section 3.1) and metadata (section 3.6) analysis to
extract information, and the navigational assistant (section 4.1.1) to view the results. The
simple task–specific knowledge base for linguistic analysis only contained the 10 most frequent
‘indicators’ such as ‘offer’, ‘provide’ or ‘specialise in’. Since the URL analyser (section 3.5)
was not yet operationally connected to Rainbow, we simulated its behaviour by observing the
links on the page and following them manually. As ‘knowledge base’ for URL–based detection
of profile page, we set up5 a collection of four significant strings, namely: about, company,
overview, profile.

Table 4.2 lists the numbers of websites (among the 36 in the pre–selected sample) that
contained the target information in the respective forms. For free text, we distinguish the
cases where the presence of company profile was only verified visually, those where it has
been detected by Rainbow (denoted as ‘FTD’), and, most specifically, those where the target
terms from free text (successfully detected by Rainbow) were not contained in META tags.
Note that, in this particular row, the fourth column is not equal to the sum of first and third,
since cases when information in free text and META tags matched across the two pages also
had to be ignored.

We can see that profile information is often contained in META tags as well as in free text,
but quite rarely in structured HTML form. It might seem that the added value of linguistic
analysis is low compared to META tags (which are available more easily). Note however

3The former are lists of terms while the latter are either lists or free–text paragraphs.
4http://www.opendir.org
5We arrived at this collection after having processed the first 20 pages and have not changed it afterwards.

Admittedly, this is not a sound cross–validation methodology, it could be however tolerated given the triviality
of the task.
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Table 4.2: Presence of ’profile’ information about the company

Main Follow–up Only Overall

Information present in page (profile) follow–up Overall (% of

page page sample)

META tags 28 10 4 32 89

Free text 11 15 12 23 64

Free text, discovered (FTD) 8 8 7 15 42

FTD while not in META 2 5 5 3 8

HTML–structured text 3 3 3 6 17

Table 4.3: Link to the profile page

Recognisable by Cases Cases (%)

Both anchor text (or ALT) and URL 15 62

Anchor text, not URL 4 17

URL, not anchor text 2 9

Neither anchor text nor URL 3 12

Total (page exists) 24 100

that in most cases, META tags contain an unsorted mixture of keywords including both
generic and specific terms related to the company, products as well as customers. Parsing the
free–text sentences can help distinguish among semantically different categories of important
terms.

Table 4.3 shows the availability and accessibility of a specialised ‘profile’ page. We can see
that only 3 of the 24 pages did not have the link denoted by one of the four terms from our set.
Analysis of URL (as specific data structure) is more-or-less redundant here since the same
information can mostly be obtained from the anchor text of the link, or from the ALT text
if there is an image instead of textual anchor. Never mind, our hypothesis of ‘informative’
URLs has been confirmed.

4.2.2 Multiway Extraction of Bicycle Information

As part of the bicycle catalogue application, we implemented a simple sequential algorithm
starting with one (or more) address of web page and ending up with upload of information
about bike offers, companies and metadata as RDF files into the Sesame repository (see
section 4.3).

There are four analysis tools called by the algorithm. They are listed in the order as they
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run:

• AmphoraWS [3] is used for collecting the addresses of Bike Product Catalogues. Am-
phoraWS gets one address where are potentially links to Bike Product Catalogues. The
role of initial web page is played by the web page listed in the respective node of the
Google Directory. AmphoraWS returns list of web pages potentially consisting Bike
Offers.

• Page classifier: we want to distinguish among ‘profile’ web page about the companies
themselves, product catalogues pages, and other web pages (which will not be processed
further). The classification can be based either on the analysis of structure of URL with
URL analyser tool or on the analysis of word unigrams with a Naive Bayesian classifier6.

• Information Extraction (IE) tool. Web pages classified as Bike Product Catalogues are
currently processed with a tool based on Hidden Markov Models, and individual bicycle
product offers are extracted.

• Linguistic analysis as the second IE tool is to process web pages classified as profile
web page for extracting information about companies.

Next phase consists of transformation of extracted information into RDF. This basically
means that information are integrated around Uniform Resource Identificators. In the last
phase, the RDF data are uploaded into Sesame repository endowed with a dedicated HTML
search interface, see [87] and section 4.3.3.

4.3 Rainbow as Semantic Web Annotator

The topics related to semantic web are ubiquitous in the thesis, for example, applications
of ontologies are discussed in several chapters. Here we discuss the relation between the
principles of the Rainbow project and the semantic web in narrow sense: RDF annotations
that can be processed by common semantic web tools. We again illustrate it on the example
from the bicycle product domain; the implementation described is due to O. Šváb.

Note that the use of semantic-web-inaware IE methods means that the results have to be
transformed from their original format to RDF. An alternative is to consider the ‘triple-based’
view to an IE method itself. An example of such (not-yet-implemented) approach was shown
in section 3.3.

4.3.1 RDF Schema for Bicycle Sale Domain

The information extraction tools described in section 3.2 are currently (in the best case)
able to yield instances of retail offers7, typically consisting of name of a bike, its price,

6This latter tool is not described in this thesis, as it is merely an implementation (by O. Šváb) of well-known
principles

7We use this term instead of ‘bike offer’, so as to cover separately-sold bike components.
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details on its components (such as fork, frame, rear derailer etc.) and its picture. This
information thus has to be covered by the underlying schema for the result repository. We
are using the RDF format, which gives us useful flexibility when dealing with incomplete and
imprecise data; hence, our data schema has the form of RDF Schema ontology. In addition
to information produced by the HMM, the schema also covers some information about the
company that offers the bicycle to be extracted other tools described in Chapter 3, e.g. a more
linguistic-oriented (free-text) analyser, META-tag analyser or URL analyser, as well as by
HMMs trained for a different sub-domain. Finally, we need to represent metadata associated
with the extracted facts, such as ”Statement XY has certainty 0.75” or ”Statement XY was
produced by URL analysis module”.

Examples of information triples (in free-text form, to avoid syntax issues) are ”Company X
offers bike Y”. ”Bike Y has name Rockmachine Tsunami”, ”Bike Y has fork Z”. ”Fork Z has
name Marzocchi Air”, ”Price of bike Y is 2500.”

The RDF schema of our domain is shown in graphical form on Fig. 4.2. It uses four names-
paces: bike dealing with bikes themselves, comp dealing with (not necessarily ‘bike’) compa-
nies, pict dealing with pictures on web pages, and meta dealing with metadata on extracted
statements. The central point of the schema is the concept of RetailOffer. It corresponds
to an offer of BikeProduct (whole bike or component) by a Company; it is also associated
with the Name under which and Price for which it is offered, and URL of associated Picture.
URI of particular RetailOffer corresponds to the URL of catalogue item containing the offer8.
BikeProduct is superclass of all bike products. Note that BikeProduct and its subclasses only
have ‘types’ of products as their instances, not individual physical entities. Such ‘type’ of
product can be offered for different prices and even under slightly different names (associ-
ated with the given instance of RetailOffer) and accompanied with different pictures, while
BikeProduct itself has a ’canonical’ name, specified e.g. by its manufacturer. Finally, our
way of representing metadata for extracted information is based on reification and inspired
by [12]. The metadata should cover information on which analysis module the statement was
obtained from, or its certainty factor. Metadata are grouped under an abstract class called
Meta.

4.3.2 RDF Repository and Query Language

As RDF repository we chose Sesame, developed by the Dutch company Aduna (earlier Aid-
ministrator), see http://sesame.aidministrator.nl, mainly because of its adherence to
current RDF recommendations by W3C and some features of its original query language,
SeRQL. Sesame also already proved scalable to larger quantities of data. A known weaker
point of Sesame is limited support for dynamic schema integration; since we deal with a
single RDF Schema fully under our control, this aspect is not of central importance.

8Typically the place from where the core information was extracted.



48 CHAPTER 4. AD HOC INTEGRATION OF RAINBOW METHODS AND TOOLS

Figure 4.2: RDF schema of bicycle domain

SeRQL9 (”Sesame RDF Query Language”, pronounced as ‘circle’) is a declarative query
language over RDF and RDF Schema. Its central part is the ‘select-from-where’10 construct
similar to SQL. The ‘select’ part lists the variables to be output. All of them must appear
in the ‘from’ part, which defines the part of RDF graph to be searched, by means of path
expressions. Finally, the ‘where’ part includes an arbitrary selection pattern, and the ‘using’
part defines the relevant namespaces.

Let us demonstrate the syntax and semantics of SeRQL on a query from our application
domain, which would read in plain English:

Find all retail offers of bicycles whose name begins with ”Trek” and price is between 700 and
950. Output the bike name, price and picture, as well as the website and name of company
that makes the given offer. Retrieve the retail offer even if the URL of picture is not known.

select name, price, picture, web, company
from
{x} <serql:directType> {<bike:RetailOffer>};

<bike:hasPrice> {price};
[<bike:hasPicture> {picture}];

9http://www.openrdf.org/doc/sesame/users/ch06.html; it is probably the most influential predecessor
of SpaRQL, the language currently endorsed by W3C.

10There is an alternative ‘construct-from-where’ option, which yields RDF triples rather than plain result
tables.
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Figure 4.3: RDF graph for example path expression

<bike:hasBikeProduct> {y},
{y} <bike:name> {name},
{x} <bike:hasCompany> {} <rdf:type> {<comp:Company>};

<comp:companyName> {company};
<comp:hasWebPage> {web}

where name like "Trek*"
and price >= "700"^^<xsd:double>
and price <= "950"^^<xsd:double>

using namespace
comp = <!http://rainbow.vse.cz/schema/company.rdfs#>,
bike = <!http://rainbow.vse.cz/schema/bikes.rdfs#>

The path expression from the example is graphically depicted at Fig. 4.3. In the ‘from’ part
of sample query, all its constituent triples are listed, taking advantage of SeRQL shortcut
notation: incomplete triples following the semi-colon symbol refer to the subject from pre-
ceding triple (here, the x variable). Note the brackets around the triple referring to picture:
this part of graph is optional. Support for optional path expressions was our major reason
for choosing SeRQL among three query languages applicable in Sesame to date (see [89] for
in-the-context comparison): there is obviously a strong need for optional items when dealing
with incomplete data extracted from HTML pages.

4.3.3 HTML Query Interface

In order to make our RDF repository available for a casual user, we prepared a domain-
specific HTML interface with several SeRQL query templates. The templates shield the user
from the syntax of the query language, and offer a simple form of navigational retrieval .

Template-based access to bike data relies on two-stage querying. The template for initial
query (specifying its ‘from’ part) is quite complicated, rich in optional path expressions; its
final shape is tuned by the user, who may refine the ‘select’ clause (variables), ‘from’ clause
(optional or not), and ‘where’ clause (comparisons). The results of initial query are the
starting point for follow-up querying. The user can then reformulate any of the two steps.

At Fig. 4.4 we see a screenshot of query interface after execution of both steps. The initial
query (in the upmost pane) corresponded to that from example above, and yielded (in the
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Figure 4.4: HTML interface to bike-offer RDF repository

middle pane) a collection of bicycle offers of desired make and within the chosen price range.
As follow-up query, the user clicked on the ‘Find bike’ link within the ‘Trek 8000’ offer made by
Bicycle Doctor for 949.99 pounds (second in the result list). The lowest pane then displayed
both offers of this bicycle present in the repository, the latter (by Compton Cycles) being
more expensive but accompanied with a picture. Analogously e.g. company information or
enlarged picture can be displayed.

The HTML interface is available at http://rainbow.vse.cz:8000/sesame/.



Chapter 5

Formal Model of Horizontal
Integration

We propose a model that associates a resource with a collection of properties that belong to
three types (closed-domain properties, object properties and content properties) distinguished
by the range of their values. The evaluation of ‘correct’ value assignment differs according
to property type, the results can however be aggregated into a single table. We hypothesise
that such a model is particularly useful in horizontal integration, when multiple complemen-
tary/supplemantary procedures can be applied on different data structures related to same
underlying entities. This is typical for websites (hence the choice of illustrative example),
which are known to exhibit a high degree of redundancy in presentation, but the model can
presumably be generalised to other types of resources, too.

5.1 Resources, Properties, Values and Meta–Information

Let us first formally define the important notions and explain their role in the whole model.

Definition 2 Let R be the universe of information resources (further only resources). Let
Rt ⊆ R be a set of resources of same type t.

An information resource can be any unique entity that carries some information content. In
the case of web, it can be for example a physical web page, a hyperlink, or a whole website.
‘Physical web page’, ‘hyperlink’, and ‘website’ can be considered as types of resources.

Definition 3 Let P = PCD ∪ PO ∪ PCn be a set of properties relevant for a set of resources
R; PCD, PO and PCn are pairwise disjoint. PCD will be called closed–domain properties, PO

object properties and PCn content properties.

Every p from PCD ∪PCn has an associated value set, Vp. Every p from PO has an associated
resource type tp.
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We assume that a fixed set of properties can characterise the resources (of a given type)
from different aspects, e.g. to indicate the author of a given page, the direction (‘upward’,
‘downward’ etc.) of a given hyperlink, or the startup page of a website. The first is an example
of a content property, the second of a closed–domain property, and the third of an object
property. While the value set of closed–domain properties is assumed as enumerated, the
value set of content properties is derived from some standard open data type. For simplicity,
let us assume that content properties have character strings for values—this is the typical
type of target information in information extraction. The model can thus be understood as
unifying, from a very particular viewpoint, the paradigms of information retrieval (values
of object properties refer to retrieved resources), text classification (values of closed-domain
properties can be understood as classes of resources) and information extraction (values of
closed-domain properties correspond to semantically labelled text extracted from the content
of resources).

Note that the model is not limited to meta–information in the usual sense, i.e. ‘information
about the resource itself’, but extend it to any information that could be acquired from the
resource and is ‘somehow’ related to it. Typically, it is the case of information about the
entity that ‘owns’ and/or ‘created’ the resource, e.g. about the company a website is devoted
to. This is not a conceptual problem, since such ‘second–order’ meta–information can be
directly captured by composed properties, e.g. ‘location–of–company–owning–the–site’.

Definition 4 For each r ∈ R, p ∈ P , the reference value of p for r will be denoted as
Ref(r, p).

• If p ∈ PCD ∪ PCn then Ref(r, p) ∈ Vp.

• If p ∈ PO then Ref(r, p) = rk ∈ Rt, where t is the resource type associated with p.

Note that we do not introduce the reference value in the sense of ’ontologically true’ value,
but just as the value to which other values would be compared. The reference value could be
even ‘N/A’ (i.e., ‘not available’) if the real value cannot be derived from the resource content
in principle.

Now, we will introduce the notion of meta–information set, which corresponds to a (possibly
partially) filled ‘template’ over the set of properties.

Definition 5 A meta–information set of resource r ∈ R, Mr, is a set

{(p1, v1), (p2, v2), . . . , (pk, vk)}

where {(p1, p2, . . . , pk)} are all properties relevant for R.

A reference meta–information set of resource r ∈ R, MRef
r , is a set

{(p1, Ref(r, p1), (p2, Ref(r, p2)), . . . , (pn, Ref(r, pn))}
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where {(p1, p2, . . . , pn)} are all properties relevant for R. Every resource has exactly one
reference meta–information set.

For simplicity, we assume that a meta–information set always covers all properties, some of
them may however have the value ‘N/A’.

Definition 6 In a given context, every p from PCn has an associated value–acceptability
relation Accp ⊆ Vp × Vp.

The value–acceptability relation may, depending on the nature of the property, amount e.g. to:

• strict equality: Accp(v,Ref(r, p)) iff v = Ref(r, p) (e.g for a company registration code)

• term permutation (e.g. for keyword lists)

• term superset with length restriction (e.g. for person names—if the page author is
’John Smith’, we could possibly accept the value ’Dr. John Smith’, sometimes even
’page written by John Smith’ but not a long sentence).

The acceptability relation may not be fixed for the given property: it may vary according to
’context’. The notion of context may, in practice, correspond e.g. to an evaluation session for
different meta–information acquisition procedures. We may thus bias the evaluation toward
’strictness’ or ’sloppiness’, and obtain coarser or finer distinctions of the procedures’ quality.
Alternatively, the context may be the syntactical standard for true meta–information.

Definition 7 A meta–information set of resource r ∈ R, Mr, is correct for r in property p
if it contains a pair (p, v) such that:

1. if p ∈ PCD ∪ PO then v = Ref(r, p)

2. if p ∈ PCn then Accp(v,Ref(r, p)).

Note that we chose to require strict identity for properties from PCD ∪ PO. In principle, we
could introduce some ’acceptability relation’ even for these. For example, relaxed criteria
for object properties might require, in a certain context, merely sub/super–object (part–
of) relation to hold (instead of identity), and similarly, for closed–domain properties, the
sub/superclass relationship in a hierarchy could fulfil such role.

Definition 8 Given two meta–information sets Mri, M′
ri

of the same resource ri, Mri is
superior (or equal) to M′

ri
with respect to ri, Mri≥M′

ri
if Mri is correct for ri in every

property in which M′
ri

is correct for ri.

This enables to compare the performance of two meta–information acquisition procedures on
the same resource (e.g. web document).
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5.2 Example

Let us demonstrate our scheme on a ’toy’ example: a hypothetical web page of a small toy
producer (Fig. 5.1).

<html>
<head>
<meta author="John Black">
<meta description="Production and sale of wooden and textile toys">
</head>
<body>
<h1>BlackWood Ltd.</h1>
<p>An opportunity for lovers of original hand-carved and hand-knitted toys.
BlackWood specialises in toys for children aged over 6 years,
and in collectioners’ items.</p>
<p>In our shop you can find:</p>
<ul>
<li>wooden animals from 4,-
<li>knitted dolls from 8,-
<li>toy furniture collection, special offer for just 120,-
</ul>
<hr>
<it>Page maintained by J. Black, last modification Feb 28, 2002.</it>
</body>
</html>

Figure 5.1: Example resource: page of a toy producer

Let us consider this page as our ’current resource’ on which the procedures will be evaluated.
Let the reference meta-information set wrt. this resource be:

MRef = { (p1 = page type, ’Main information page’)
(p2 = page author, ”John Black” )
(p3 = name of company referenced by page, ”BlackWood Ltd.”)
(p4 = domain of competence of company referenced by page,
”toys”)
(p5 = pricelist location, ’/html/body/ul’)
(p6 = contact address location, ’N/A’) }

p1 is a closed–domain property, p2, p3 and p4 are content properties, and p5 and p6 are object
properties. The acceptability relations for content properties will be defined as follows (for
simplicity we write Accn(x, y) instead of Accpn(x, y)):

• Acc2(x, y) holds (for sequences of terms) if x contains the last term from y and no more
than three other terms.
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• Acc3(x, y) holds (for sequences of terms) if x contains the first term from y and no more
than one other term.

• Acc4(x, y) holds (for sequences of terms) if x contains all terms from y and less than
|y| other terms.

We will consider four meta–information acquisition procedures Pr1, P r2, P r3 and Pr4. For
instructiveness, we will assume that1

• Pr1 is a Naive Bayes page categoriser operating on unigram representation.

• Pr2 is an extractor of META tag content, equipped with heuristics mapping META
attributes on target meta–information properties.

• Pr3 is a linguistic, parser–based information extractor equipped with a database of
domain–neutral lexical indicators.

• Pr3 is an HTML–and–punctuation–based information extractor equipped with a database
of domain–neutral lexical indicators.

The meta–information sets produced by the procedures will be (M(k) denoting the output
of the k−th procedure, for the given resource):

M(1) = { (p1 = page type, ’Main information page’)
(p2 = page author, ’N/A’)
(p3 = name of company. . . , ’N/A’)
(p4 = domain of competence. . . , ’N/A’)
(p5 = pricelist location, ’N/A’)
(p6 = contact address location, ’N/A’) }

(the keyword–based categoriser is clearly designed for classification only, and does not care
about structural patterns; assignment to ’Main information page’ might be due to the pres-
ence of several ’promotion’ keywords such as ’opportunity’, ’lovers’ or ’original’)

M(2) = { (p1 = page type, ’N/A’)
(p2 = page author, ”John Black”)
(p3 = name of company. . . , ’N/A’)
(p4 = domain of competence. . . ,
”Production and sale of wooden and metallic toys”)
(p5 = pricelist location, ’N/A’)
(p6 = contact address location, ’N/A’) }

(assuming that the meta–attribute ’description’ is tentatively mapped on the property do-
main of competence. . . )

1These hypothetical procedures roughly correspond to some of the tools developed within the Rainbow
project.
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M(3) = { (p1 = page type, ’N/A’)
(p2 = page author, ”J. Black”)
(p3 = name of company. . . , ”BlackWood”)
(p4 = domain of competence. . . ,
”toys for children aged over 6 years, collectioners’ items”)
(p5 = pricelist location, ’/html/body/ul’)
(p6 = contact address location, ’N/A’) }

(the value of page author is identified with the subject that ’maintains’ the object ’page’; the
value of name of company. . . is identified with the subject that ’specialises’ in something—
which is, in turn, identified with the value of domain of competence. . . ; finally, the pricelist location
is identified with the HTML element immediately following that with the phrase ’. . . you can
find’)

M(4) = { (p1 = page type, ’Main information page’)
(p2 = page author, ”Page maintained by J. Black”)
(p3 = name of company. . . , ”BlackWood Ltd.”)
(p4 = domain of competence. . . , ’N/A’)
(p5 = pricelist location, ’/html/body/ul’)
(p6 = contact address location, ’N/A’) }

(the page type is recognised by presence of free–text paragraphs as well as a list—a mixture
presumably typical for ’Main information page’; the value of page author is identified with the
slanted text in the page footer; the value of name of company. . . is identified with the text
in the topmost header, containing the pattern ’Ltd.’; finally, the pricelist location is identified
with the unordered HTML list containing estimated ‘price–patterns’ in each item).

Taking into account the acceptability relations for p2, p3 and p4, the ’correctness scores’ of
the meta–information sets for the individual properties are as follows:

Property Pr1 Pr2 Pr3 Pr4

page type 1 0 0 1
page author 0 1 1 0
name of company. . . 0 0 1 1
domain of competence. . . 0 0 0 0
pricelist. . . 0 0 1 1
contact. . . 0 0 0 0

From the table we can deduce that e.g.:

• M(4) is superior to M(1)

• M(3) is superior to M(2)

It is however clear that complementarity of procedures is more important than superiority.
We can easily see that:
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• no combination of procedures can correctly acquire all meta–information

• if we removed the ’inaccessible’ p4 and ’inavailable’ p6, the minimal combinations of
procedures needed for correct acquisition would be {Pr1, Pr3}, {Pr2, Pr4} and {Pr3,
Pr4}.

Furthermore, it is more reasonable to remove the closed–world assumption, since ignorance
should not be treated the same as error. The original table will then look as follows:

Property Pr1 Pr2 Pr3 Pr4

page type 1 ? ? 1
page author ? 1 1 0
name of company. . . ? ? 1 1
domain of competence. . . ? 0 0 ?
pricelist. . . ? ? 1 1
contact. . . ? ? ? ?

We could also construct the table for pairs of procedures. Here, in the case where both
procedures return a value, we can either demand, for a correct result, that both are correct,
or just that at least one is correct.

With the first interpretation, the table looks as follows:

Property Pr1,Pr2 Pr1,Pr3 Pr1,Pr4 Pr2,Pr3 Pr2,Pr4 Pr3,Pr4

page type 1 1 1 ? 1 1
page author 1 1 0 1 0 0
name of company. . . ? 1 1 1 1 1
domain of competence. . . 0 0 ? 0 0 0
pricelist. . . ? 1 1 1 1 1
contact. . . ? ? ? ? ? ?

We can see that, in the first (more natural?) interpretation, the combinations involving Pr4

now become inferior, since its incorrect claim of knowing the value or page author invalidates
the correct suggestion of Pr2 or Pr3, respectively. The combination {Pr1, Pr3} then appears
as clear ’winner’.

With the second interpretation, the table looks as follows (changes in boldface):
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Property Pr1,Pr2 Pr1,Pr3 Pr1,Pr4 Pr2,Pr3 Pr2,Pr4 Pr3,Pr4

page type 1 1 1 ? 1 1
page author 1 1 0 1 1 1
name of company. . . ? 1 1 1 1 1
domain of competence. . . 0 0 ? 0 0 0
pricelist. . . ? 1 1 1 1 1
contact. . . ? ? ? ? ? ?

The three candidate combinations would then become ’equally correct’ again.

5.3 Discussion of the Model

The present model strikes for certain balance between simplicity and coverage. However,
due to stress on the former, many important aspects of real-world meta-information acquisi-
tion tasks remain uncovered. Among the most important limitations (and topics for future
research) are probably the following:

• The model does not treat different methods of combining the results of multiple proce-
dures for the same property (such as voting)

• No uncertainty is allowed in the results of the procedures.

• The properties are single-valued.

• The model is static, it does not anticipate possible change of property values over time.

It might also be interesting to compare the typology of properties in our model with the
inventory of web ontology languages such as OWL2. In OWL, content properties would corre-
spond to datatype properties with embedded data type, while closed–domain properties would
correspond to (object/datatype) properties with enumerated class / data type, respectively,
since enumeration is possible, in principle, for both types of properties in OWL. Unlike web
ontology languages, we however treat class membership simply as (closed–domain) proper-
ties, to keep the model general enough. Aside the ‘enumeration’ case, the notion of object
property has equivalent meaning in our model and in OWL. Mapping (of semantically rel-
evant elements) from OWL to our model seems to be rather straightforward: a structured
ontology could be flattened to our model by replacing pairs of chained properties with new,
composed, properties. Having done such mapping, we could then e.g. ‘tap’ on existing tools
producing meta-information in the form of RDF triples.

Future work will address some of the limitations discussed above. Since the model is cur-
rently merely descriptive, we examine some existing algebraic formalisms that could extend

2http://www.w3.org/TR/owl-features/
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it with more rigorous semantics. We would also like to elaborate on the problem of transfor-
mation/mapping to/from ontology languages suggested; an adequate method could possibly
be adapted from state-of-the-art research on ontology transformation and matching3.

3http://www.ontologymatching.org/
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Chapter 6

Overview of Knowledge Modelling

The discipline of knowledge modelling, though not too frequently mentioned outside its own
community, is inherently present in many nowadays popular notions such as semantic web or
ontologies. Its history and main principles are subject of this short chapter, from the seminal
works deeply anchored in artificial intelligence research, to the more widespread (and often
more ‘mundane’) semantic web research.

6.1 From Symbol Level to Knowledge Level

In the 60s and first half of 70s, published research in knowledge-based systems (KBSs) was al-
most uniquely devoted to concrete (mostly, logic-based) techniques of representing knowledge
in symbolic form and performing (formally sound) inference steps over this representation.
Little attention was paid to the fact that every KBS can be viewed, similarly as a human,
as aiming to achieve some higher-level goal and using its ‘knowledge’ in the more abstract
sense of the word (that of ‘being familiar’ with e.g. a certain subject matter). A. Newell, in
its pioneering work [59], suggested to view a KBS both

• at the symbol level, describing e.g. its inputs/outputs, internal memory and control
structures

• at the knowledge level, describing its goals, actions taken to achieve these goals, and
the knowledge about its ‘environment’ and about itself.

Clearly, a single knowledge-level description can correspond to many different symbol-level
descriptions. The (conceptually) same knowledge can be represented e.g. via rules, frames,
decision trees or first-order theories. The (conceptually) same control structure, e.g. of finding
an entity matching with a description, can be implemented e.g. as breadth-first search, depth-
first search, or some form of informed search, over a structure of candidate entities.

Among the multiple ideas introduced by Newell, it was the concept of generic tasks and
of implementation-independent methods used to complete these tasks that attained most
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interest in the following almost 20 years—under the name of problem-solving methods (PSM).

6.2 Problem Solving Methods

The first generic method of problem solving, from which many successors took inspiration,
was the model of heuristic classification formulated by Clancey [20]. It represents an ab-
straction over the reasoning structure of numerous diagnostic expert systems from different
domains. Its essence are three ‘primitive’ inferences called ‘abstract’, ‘match’ and ‘specialise’,
whose inputs/outputs are denoted as knowledge roles: ‘Observables’, ‘Variables’, ‘Solution
Abstractions’ and ‘Solutions’. The knowledge roles are, in a concrete application, mapped
on domain concepts. For example, a medical expert system for treatment recommendation
might acquire patient lab tests and other findings as ‘Observables’, it would abstract more
general notions such as ‘obesity’ or ‘hypertension’ from them, match these with general cat-
egories of drugs such as ‘diuretics’ or ‘β-blockers’, and, finally, specialise the drug groups to
concrete substances, drug brands and dosage, according to the context, e.g. availability on
market and coverage by insurance.

Observables

6
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�
�abstract

6

Variables -

�
�

�
�match - Solution

abstractions

?�
�

�
�specialize

?

Solutions

Figure 6.1: Inferences and knowledge roles in heuristic classification model

The CommonKADS methodology [69], fully developed in mid 90s, formulated complex guide-
lines for the design and usage of PSMs in the context of knowledge-based system development.
The knowledge-level description of a KBS is viewed as consisting of three interconnected lay-
ers:

1. The domain layer describes the relevant domain concepts and relations independent of
their use for reasoning.

2. The inference layer specifies the flow of inferences and data but not the control flow.
It is typically expressed using inference diagrams such as that of heuristic classification
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shown at 6.1. Knowledge roles in the diagram are mapped to concepts from the domain
layer.

3. The task layer specifies the decomposition of tasks to subtasks and the algorithmic
control structure. The lowest level of tasks in the decomposition tree corresponds to
the inferences from the previous layer.

While the domain layer has to be assembled individually for every application, with respect
to the domain1, the remaining two layers are to large degree domain-independent. Several
libraries of generic tasks with abstract descriptions of methods for their solving (PSMs),
subsequently arose. They contain skeletons of inference and task layers, typically divided
into two large groups: for analytic tasks, such as classification, diagnosis, assessment or
monitoring, and for synthetic tasks, such as configuration, planning or scheduling.

6.3 Ontological Engineering

Compared to the situation ten years ago, the familiarity with the notion of ontological en-
gineering has widespread in the computer science community. As it is not the main topic
of the thesis, we only explain it in the extent necessary for understanding other parts of the
text, and with numerous simplifications. Interested reader can get an overview of ontological
engineering proper from [31] and a broader overview of applied ontology topics from [72].

The notion of ontology appeared long ago in philosophy, where it denoted the discipline
dealing with the nature of and types of being, possibly also a general theory of being. In
computer science, ontologies (in plural) are formal models of reality, describing concepts,
individuals and relations that ‘exist’ in a certain domain. They differ from other types
of conceptual models (such as ER diagrams and thesauri) by the stress on clean logical
semantics, which allows formal reasoning over them.

As an example of ontological definition, let us show (in Table 6.1) one from the Enterprise
ontology [94], which formally represents the notion of ‘sale offer’ in the language called On-
tolingua [32], the most prominent ontology language in the 90s. The class Sale-Offer is
defined by means of a necessary and sufficient condition (Iff-Def), which is a conjunction
of simple subclass relationship wrt. another class (For-Sale) and existence of an object
(?Le, for ‘legal entity’) that is connected with the Sale-Offer instance by means of the
Specified-Potential-Customer relation.

6.4 Semantic Web Ontologies and PSMs

Although the principles of ontological engineering are entirely independent of the semantic
web environment, it is obvious that ontologies owe most of their current popularity to that
of semantic web. While the use of languages such as Ontolingua was limited to a few tens

1Domain ontologies, as mentioned below, would serve as starting point.
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Table 6.1: Concept definition in Enterprise ontology

(Define-Class Sale-Offer (?X)
"A For-Sale situation with a Specified-Potential-Customer"
:Iff-Def
(And
(For-Sale ?X)
(Exists (?Le) (Specified-Potential-Customer ?X ?Le))))

of specialised (artificial intelligence) research groups, ontologies in the current semantic web
language OWL2 (or in simpler RDF Schema) are developed by thousands of researchers
and practitioners, often without AI background. For the design of ontologies to become a
widespread skill rather than a difficult art, many supporting methods and tools are required;
see [78] for an overview. Let us first mention ontology editors such as Protégé3 (with its
OWL Plug-In component) or WebODE [7], which shield the user from the unfriendly syntax
of the web ontology language4 and allow to navigate along the conceptual paths among
concepts, individuals and relations (called ‘properties’). Furthermore, there are systematic
methodologies such as METHONTOLOGY [31], and upper-level ontologies that can be reused
as ‘root’ for more specific, application-oriented ones. Finally, there has recently been growing
interest in detailed design patterns describing ontology constructs and their use cases, either in
the sense of logical structures (such as ‘using classes as values for properties’ [60] or ‘converting
n-ary relations to binary ones’ [61]) or content structures (such as ‘participation of an agent
in an event’ [29]).

The role of PSMs on the semantic web has been much less investigated; potentially, their role
could be that of templates for complex reasoning services for semantic web applications. A
pioneering work has been done in the UPML project [26]; the most recent research is best
represented by the work by ten Teije et al. [90], described in more detail in section 8.4.1.

2http://www.w3.org/TR/owl-features/
3http://protege.stanford.edu
4Its formal expressions are melted downto RDF triples, which are themselves serialised in XML.



Chapter 7

Framework and Ontologies for Web
Space Analysis

7.1 TODD: a Conceptual Framework for Web Analysis

In section 1.1, deductive web mining (DWM) was defined as ‘all activities where pre-existing
patterns are matched with web data’; the patterns may be either hand-crafted or learnt.
We proposed a framework that positions any DWM tool or service within a space with four
dimensions:

1. Abstract task accomplished by the tool. So far, we managed to characterise any concrete
DWM task as instance of either:

• Classification of a web object into one or more pre-defined classes.

• Retrieval of one or more web objects.

• Extraction of desired information content from (within) a web object.

The Classification of an object takes as input its identifier and the list of classes under
consideration. It returns one or more classes.

The Retrieval of desired objects takes as input the (syntactic) type of object and con-
straints expressing its class membership as well as (part–of and adjacency) relations to
other objects1. It outputs the identifiers (addresses based on URIs, XPath expressions
and the like) of relevant objects2.

1For example: “Retrieve (the XPath addresses of) those HTML tables from the given website that are
immediately preceded with a possible ‘Product Table Introduction Phrase’ (containing e.g. the expression
product*)”.

2In the description of this as well as other tasks, we omit auxiliary information on output, such as numerical
measures of relevance or uncertainty. These are also typically output by DWM applications, including those
developed in Rainbow.
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The Extraction task takes as input the class of information to be extracted and the
scope (i.e., an object) within which the extraction should take place3. It outputs some
(possibly structured, and most often textual) content. In contrast to Retrieval, it
does not provide the information about precise location from where the content was
extracted4.

2. Type of object to be classified or retrieved, or from which information is to be ex-
tracted. The types, such as Document, Hyperlink, or Phrase, represent an upper-level
of abstraction of web objects; any class of web object considered in a DWM application
should be subclass of such type. This is facilitated by the fact that types correspond
to classes of our Upper Web Ontology (see section 7.2). The basic assumption is that
the type of object is always known, i.e. its assignment is not by itself subject of DWM.

3. Data type5 and/or representation6, which can be e.g. full HTML code, plain text (with-
out tags), HTML parse tree (with/without textual content), hyperlink topology (as di-
rected graph), frequencies of various sub-objects or of their sequences (n-grams), image
bitmaps or even URL addresses.

4. Domain to which the task is specific.

We thus denote the framework as ‘task-object-data(type)-domain’ (TODD). Its dimensions
are to high degree independent, e.g. object type is only partially correlated with data type. For
example, a document may be classified based on its HTML code, URL, META tag content or
position in topology. Similarly, a hyperlink can be classified based on its target URL or the
HTML code of source document (e.g. the menu structure containing the respective <a> tag).
Clearly, not all points of the 4-dimensional space are meaningful. For instance, a META tag
content cannot directly be used to classify a hyperlink, since the relation of a META tag
(being a special class of HTML document fragment) to a hyperlink is intermediated by a
whole HTML document.

7.2 The Collection of Rainbow Ontologies

7.2.1 Basic Principles and Layers

In the construction of Rainbow applications, ontologies as shared formal conceptualization
of a domain will enable consistency checking of offered services and provide support for the
integration of multiple types of analyses. The initial version of Rainbow ontologies was built

3For example: “Extract the occurrences of Company Name within the scope of given Company Website”.
4This is of course merely a knowledge-level view, which does not discourage relevant DWM applications

from remembering such information for technical purposes.
5Readers familiar with semantic web terminology should avoid confusion of the object type / data type

dimension of TODD with the distinction of object / datatype properties in ontology languages such as OWL,
see section 6.4. There is no such analogy.

6We alternatively call this dimension ‘web view’, since the particular representation of data corresponds to
a certain view of the complex structure of the web.
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in 2003 (by M. Labský in cooperation with V. Svátek)7, as a proof of concept rather than as a
fully integrated component usable in on-line web analysis. As a matter of fact, the collection
of Rainbow analysis tools has not yet grown to a size where ontological support for their
integration becomes necessity. Subsequent re-engineering and use of the ontologies has thus
been postponed to later phases. The main research contribution of the ontological engineering
sub-project of Rainbow was thus the innovative adaptation of an ontology merging method,
described in the section 7.2.2. Parts of the ontology were also rewritten in the form of Prolog
clauses and used in the simulation of automated tool composition, which is described in
section 8.5.1. Let us now describe the initial version of ontology collection.

In general, there are two kinds of concepts in Rainbow ontologies — syntactic types and seman-
tic classes. Types currently considered are e.g. Document, DocumentFragment, HyperLink
or Phrase. Among classes, there are e.g. HProductCatalogue, TLeafDocument, HProductDe-
scription or LSentence. As outlined above, classes8 differ from types in the sense that their
identification is subject of analysis, while the identification of types is assumed to be known
in advance (say, no Rainbow tool should be developed in order to distinguish a physical page
from a collection of pages). Every class is subconcept of some general type.

In addition to concepts, there are also relations. Among the most widely used relations in
Rainbow ontologies is the transitive part–of relation, e.g. HProductDescription may be part–of
a HProductCatalogue. Concepts can also be adjacent to each other, they may be identified–by
some other concepts etc. Inverse relations are defined where possible.

The three dimensions of the TODD model (i.e. apart from the task dimension), namely
the distinction of data types, object types and application domains suggest a natural decom-
position of the system of ontologies into four layers as depicted in Fig. 7.1. The upmost
layer contains the object types themselves. Furthermore, the upper two layers are domain–
independent and therefore reusable by applications from all domains, while the lower two
layers add information specific to the domain of analysis, e.g. OOPS (‘organisations offering
products and services’) sites or web pornography. Finally, the outer two layers contain con-
cepts that are independent of the data type used for their recognition, while the inner two
contain data-type-dependent concepts. Let us now characterise each of the four layers, in
turn.

Upper Web Ontology.

The abstract Upper Web Ontology (UWO) provides a hierarchy of common Web–related
concepts and relations that are shared by all analysis types and application domains. The
UWO doesn’t attempt to define an exhaustive description of the WWW. Instead, it provides
a shared conceptual language for all Rainbow modules to build upon. The UWO only defines
concepts that correspond to syntactic types as defined above, and only the most generic ones,
which are likely to be frequently reused across individual analysis tools. Its UML diagram is

7In the DAML+OIL language (predecessor of OWL, see http://www.daml.org/2001/03/daml+oil-index.
html); the whole collection is available from http://rainbow.vse.cz.

8Note that both types and classes in the specific Rainbow terminology were syntactically modelled as classes
in DAML+OIL.
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Figure 7.1: Structure of the Rainbow ontology system shown on HTML analysis example

at Fig. 7.2.

Partial Generic and Domain(-Specific) Web Models

For each way of analysis, Partial Web Models occupy the middle layers of the Rainbow ontol-
ogy system. Concepts and relations defined in these models represent the classes and types
specific to one data type. The partial web models consist of a generic and domain–dependent
part. Elements introduced in the generic model are based on the UWO and are reusable
across different application domains. On the other hand, for each data type there might be
domain models specializing in different application domains. All of these domain models are
then based on a single generic model and the common UWO. Concepts from the generic and
domain models mostly correspond to classes of resources, but new types may be defined as
well. In Fig. 7.1, the generic model and OOPS domain model for HTML analysis are depicted
within the dashed area. Examples of concepts from these models and the UWO are shown on
the right. Class names are prefixed with corresponding data types: ’H’ for HTML structure,
’T’ for topology etc.

Domain(-Specific) Web Ontologies

The central information contained in partial web models (both generic and domain) are
the concept hierarchies of semantic classes. Each such hierarchy extends one of the classified
syntactic types, such as Document or DocumentFragment, and presents a data–type restricted
view of that type. In our approach, the integration of multiple analyses consists in merging



7.2. THE COLLECTION OF RAINBOW ONTOLOGIES 71

WebResource
URI

WebObject

DocumentCollection HyperLink

DocumentDocumentFragment
XPointer

ImagePhrase

*

*
start_of

target_of

Figure 7.2: UML diagram of Upper Web Ontology

these class hierarchies9. The resulting class hierarchy is no more restricted to a single data–
type view and is included in a Domain Web Ontology (DWO), as depicted in Fig. 7.1.

The DWO also imports all concepts from the UWO and partial models. Thus, the DWO is
a domain-specific ontology of web resources, and it integrates all data–type specific views of
the used analyses.

7.2.2 Merging the Partial Ontologies

We propose to derive the structure and content of the DWO based on labelled data, which
may be acquired e.g. from training data previously used to train the individual modules. This
labelled data comprises training web pages that are simultaneously labelled with classes used
by different types of analyses (based on different data types).

Input Data to the Merge Process.

As mentioned earlier, Rainbow currently addresses semantic classes that are subclassed from
the syntactic types such as Document, DocumentFragment, DocumentCollection or Hyper-
Link. These four types of objects may have ontology–defined relations such as part–of; using
these relations, we can — in a limited way — relate the concepts to each other and use this

9These is–a hierarchies will often be flat, since the analysis–specific classes are usually not richly structured
before integration.
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information as input to the merging process.

Before we start to merge concepts, we have to choose one central syntactic type to which
all other (currently three) syntactic types will be related. For example, if the merge process
is done for the Document as the central type, we regard the labeled input data as a set of
training Documents. The input attributes used by the merge process are then of the following
forms:10

• is <Document class>,

• contains <DocumentFragment class>,

• part–of <DocumentCollection class>

• (source–of or target–of) <HyperLink class>.

For other syntactic types, the same relations (or their inverses) may be used to derive equiv-
alent attribute sets. For example, if DocumentFragment was chosen as the central type, we
would regard the labeled data as a set of DocumentFragments and use attributes such as
part–of <Document class>).

In further text, we will only consider Document as the central syntactic type. The labeled
input data is therefore treated as a set of documents, which we will denote as D. Each
document di ∈ D has attributes given by the analysis–specific classes it is labeled with. Each
of these attributes has one of the above four forms.

The Merge Process.

The task is essentially that of merging parts of multiple ontologies based on concept exten-
sions. For its accomplishment we use an adapted FCA–Merge method introduced in [77],
based on formal concept analysis (FCA). FCA–Merge is a semi–automatic method which
originally integrates ontologies based on a set of natural language documents, in which ref-
erences to ontology concepts are found using NLP techniques. In our approach, we use a
set of training documents, where labeled instances of to–be–merged concepts already exist.
Detailed description of our adaptation of FCA-Merge (carried out by M. Labský) can be
found in [44].

The result of the merging process is a hierarchy of new concepts, each of which may be (1)
an exact copy of its original analysis–specific concept, or (2) a concept that has been created
by combining more of the original concepts together. FCA–Merge assists the human inte-
grator and makes suggestions, but the ultimate modeling decisions are left to the integrator.
Concepts can typically be combined when they have the same extension in the training data,
resulting in them being replaced by a new concept in the role of their conjunction. If two
or more of the original concepts have a significant overlap, a new concept, representing their
conjunctions, may be added to the new ontology as well as the original ones. This takes place

10Relations part–of, source–of, target–of and defined in the UWO.
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especially when there exist concepts in the source ontologies that are more specific than the
potential new concept, and/or when the new concept has high support11 in training data.
The hierarchy of the new ontology is derived directly from the concept lattice and can be
altered by the integrator. Typically, the resulting class hierarchy is deeper (as it is drawn
from data) than the usually flat hierarchy of input classes.

The new concept hierarchy reveals previously hidden subsumption relations across the dif-
ferent analysis types. These empirically induced subsumptions may further be checked with
formal ontology definitions of the original concepts. This checking could be made automatic
and a conflict would signal either inconsistently labeled training data or a wrong definition
of some of the original concepts.

The final DWO only consists of the merged classes, while all other information is simply
imported from the partial web models and the UWO.

Example

In the following we present a ’toy’ example taken from the domain of websites of car dealers. In
the example, integration is done based on a set of only thirteen manually labeled documents.
Nevertheless, we will be able to demonstrate some of the benefits of this method. Due to
lack of space, we will consider only one kind of semantic classes: Document. The other three
kinds of classes could be taken into account as described above. We also limit the integration
to two types of analyses: HTML structure and topology.

Table 7.1: HTML documents classified by the topology and HTML structure analysis
I TLE THU TLO TRE HAB HRE HPR HIM
d1 × ×
d2 × × ×
d3 × ×
d4 × × ×
d5 × × ×
d6 × × × ×
d7 × × × ×
d8 × × × ×
d9 × × × ×
d10 × × ×
d11 × × ×
d12 × × ×
d13 ×

The above table shows thirteen documents classified by data-type specific classes. Topology–
specific classes are prefixed with ’T’, while HTML–specific classes have ’H’ as their first
letter:

• TLeaf (TLE) is a document with no links to other documents,

• THub (THU) has more than 1 link to other documents,

11We compute support as the number of positive documents divided by the total number of training docu-
ments.
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• TLocalHub (TLH) is a subconcept of THub, most of whose links lead to the same IP
address as its own,

• TRemoteHub (TRH) is a subconcept of THub, most of whose links lead to a different
IP address than its own,

• HAboutCompany (HAB) is a document describing a company in general,

• HProductCatalogue (HPR) contains descriptions of offered products,

• HReferences (HRE) refers to customers’ pages,

• HImageGallery (HIM) contains a set of similarly–sized images.

From the labelled set of documents, we are able to construct a concept lattice depicted
in Fig. 7.3. Formal concepts that are on the same level of specificity as the source class
hierarchies are shown in dark color. On the other hand, formal concepts more specific than
original classes are drawn in light color.

Figure 7.3: Pruned concept lattice derived for the 13 car dealer documents

We observe that no original concepts had the same extensions in the training data, as each
formal concept directly corresponds to at most one ontology concept. Depending on the use
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of the target ontology, all or most of the original classes could be included in it. In the con-
cept lattice, we might reveal several interesting implications pertaining the analyzed domain
(or, more precisely, the training data), such as HImageGallery ⇒ HProductCatalogue or
HReferences ⇒ HRemoteHub. It is up to the integrator what part of the induced hierarchy
will be reflected in the target ontology.

We can also identify one new (no-name) concept which is a combination of THub and HPro-
ductCatalogue and whose specialization is HImageGallery. This concept might e.g. stand for
product catalogues referring to child documents with detailed information about the sold
products — let us denote it ComplexProductCatalogue12 . Because of its interpretation and
being within the specificity level of the original ontologies, ComplexProductCatalogue is an
appropriate candidate for adding to the target ontology.

Last of all, formal concepts more specific than the original ontologies should be examined.
Frequently occurring combinations of original ontology concepts may be included in the target
ontology as well if they are considered useful by human integrators. For example, the formal
concept with extension d6, d8, d9 and significant support of 0.23 may be considered interesting
for certain applications and included in the target ontology as GraphicalLocalCatalogue.

Related Work

An analogous effort to our construction of Rainbow ontology was the OntoWebber project
[37], in which a ‘website ontology’ was designed. It was however biased by its application on
portal building (i.e. ‘website synthesis’), and thus did not fully cover the needs of automated
analysis.

Integration of ontologies for other domains has been addressed by numerous projects, see
e.g. http://www.ontologymatching.org for links.

7.3 Ontologies in Web Information Extraction

While the previous section addressed the role of ontologies in the overall architecture of
Rainbow, as instrument for integration of different analysis tools, in this section we discuss
the role of ontologies in connection with a specific (and actually, most important) analysis
task, that of information extraction from the content of websites.

In a general overview of ontology types, van Heijst [96] distinguishes among terminological,
information and knowledge ontologies. Terminological ontologies are centered around human-
language terms, without direct reference to real world. Their main constructs are synonym
sets and (hyponymy/meronymy) hierarchies. Information ontologies and knowledge ontolo-
gies both deal with classes directly mapped to sets of entities (instances) in some universe
of discourse. Knowledge ontologies however differ from information ontologies by presence

12The new concept is not specific to any type of analysis.
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of formal axioms, most particularly, by the possibility to define the extent of a class via a
logical expression over its properties (relations to other classes).

The range of models possibly appearing in different phases of web information extraction
(WIE), as specific type of potential ontology application, seems to be analogous to the gen-
eral categorisation. Stevenson & Ciravegna [75] already raised the issue of ontologies ‘for
customer service’ that do not satisfy the needs of information extraction components, namely,
they point out the contrast between domain ontologies suitable for reasoning over real-world
objects (in the ‘customer’ application) and linguistic ontologies applicable on (presumably,
continuous) text. This contrast however becomes less sharp when considering semi-structured
web content in the form of lists, tables or forms. Ontologies directly usable for analysis of
web structures are likely to borrow a lot from ‘customer-service’ ontologies, since the frag-
ments of HTML code will often directly map on ontology classes, attributes/relations and
instances. We will call them presentation ontologies, since their universe of discourse is that
of web objects as presented on the web (e.g. bicycle offers encoded in HTML) rather than
of real-world objects (real bicycles). Finally, at the level of plain text strings, terminological
ontologies may come into play.

Let us illustrate this simple typology of WIE (uses of) ontologies on our experiments in the
bicycle domain (described in section 3.2) and on related projects.

7.3.1 Ontologies in Rainbow Product Catalogue Application

Let us briefly recall the three uses of ontologies in connection with Rainbow information
extraction tools, two of which were already presented in chapter 3.2.

• Populating the Domain Ontology. The ontology to be populated was expressed in
RDF Schema, see section 4.3 for more detail. Fig. 7.4 (already shown in section 4.3)
shows most of the ontology: it covers information on the product offer itself (as pre-
sented on the web), characteristics of the product, as well as those of the selling com-
pany. Consistently with the observation made in [75], this ontology links together pieces
of information occurring nearby each other at a product catalogue page, as well as those
located quite separately or even not directly present on the website and thus unlikely
to be picked up by means of a single WIE procedure. Indeed, different parts of the
ontology are assumed to be populated by different analysis methods within Rainbow.

• Template-Filling with Presentation Ontology. We assume that presentation on-
tologies will most likely be restricted to a smaller portion of the original domain, cut
up according to web presentation factors. Our simple ontology already mentioned in
section 3.2 and shown on Fig 7.5 is specific to product catalogues13, and only contains
one ‘true class’, that of Bike Offer; the remaining concepts are shrunk to its proper-
ties14. Note (in contrast to the domain ontology above) the direct link between product

13Similar presentation ontologies could be designed e.g. for company profile (pages) or contact info (pages);
the former would presumably be more linguistic-oriented as the profile information is typically expressed by
free text, cf. [38].

14It could thus be viewed as information ontology (i.e. a data schema) in the typology from [96].
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offer information and information about bike parts. Although not ‘deeply’ ontologically
related, they fit together in terms of presentation: the company hopes to sell the of-
fered bike thanks to pointing out its equipment. The domain of product offers is simple
enough (in terms of logical structure of presentation) to allow to keep only one class and
to dissolve the remaining ones into properties. This assumption would certainly not
hold for all domains where WIE might be applied; the presentation ontology then would
have multiple ‘class vertices’, and the template-filling algorithm (see below) would be
more sophisticated.

While the domain ontology was destinated for direct retrieval of structured information,
our presentation ontology is tuned for ‘template filling’ by means of a simple sequential
algorithm (assigning properties to the ‘current’ object as long as constraints are satis-
fied). The expressive power of the ad hoc ‘ontology language’ used is thus kept limited.
The central features are the uniqueness, multiplicity and optionality of properties, the
latter two indicated with the * and ? symbols, respectively. In addition, ‘sticky’ prop-
erties are distinguished: as soon as the value of sticky property is discovered on a page,
it is filled to all objects extracted afterwards, until a new value is discovered for this
property.

• Lexical Taxonomy for Primary Annotation. In our project we have not used
a lexical taxonomy (even not a look-up gazetteer) in the primary annotation of bike
names, prices, component names and the like; the annotation was entirely carried out
by means of statistical models. However, a collection of more than 60 bicycle categories
(in various sense) arose as side product of annotation, and was later arranged into a
hierarchy (see part of it at Fig. 7.6). We could easily imagine adoption of a similar
taxonomy, e.g. a domain-specific part of product taxonomy such as bicycle-specific part
of UNSPSC15, for automated annotation with possibility of conceptual abstraction upto
an arbitrary level of taxonomy.

7.3.2 Ontologies in Other WIE Projects

The authors are not aware of a similar study related to WIE, offering a synoptic view of
multiple ontology types and uses; our own experiments are presented as simple instantia-
tions of more general ideas rather as for their own sake. Let us now position some advanced
ontology-endowed WIE projects in the above-described framework. Embley [22, 23] uses the
notion of ‘extraction ontology’ for conceptual schema with data frames hand-crafted by do-
main expert (i.e. presentation ontology). While [23] focuses on HTML table analysis (for
offers of products, namely, cars), [22] deals with free text16 (obituaries); the nature of ‘ex-
traction ontology’ however remains the same. In the Armadillo [19] project, an (inductively
learnt) presentation ontology allows to reuse a surface-logical structure from one resource to
another, e.g. accross multiple bibliography resources from the same domain, containing data
about overlapping sets of publications. A sort of presentation ontology is also used in the
OntoBuilder project [28] aiming at ‘deep web’ information extraction. It defines layout rules

15http://www.unspsc.org
16But applies surface term-distance heuristics rather than sentence parsing.
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Figure 7.4: Part of RDF schema for the bicycle domain

Bike offer

name
price
discount*
pic ?
year*
speed?
color*
size*
weight*

 frame?
 fork?
rearshock?
rdr?
fdr?

 brake?
brl?
tyre*

 shift?
 hub?
 chain?
cas?

cat!
make!

Figure 7.5: Bicycle offer presentation ontology
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Figure 7.6: Fragment of empirical taxonomy for bicycle ‘categories’

for HTML forms used as input to online databases. On the other hand, the Crossmarc project
[63] is limited to terminological level (term sets mapped on semantic classes) in its usage of
ontologies17. In the AeroDAML approach [41], a terminological ontology (WordNet) is used
for annotation and a knowledge ontology (expressed in DAML) is populated by extraction
results. Since the extraction method is named-entity recognition rather than structural IE,
consistency-constraints are only applied at the level of target domain ontology rather than
within a dedicated presentation ontology. Similarly, Maedche et al. [50] used an ontology
engine (OntoBroker) to verify ‘conceptual bridges’ between terms extracted via shallow syn-
tactic analysis. Ontologies are of course important in many IE projects that do not explicitly
target the WWW but handle text structures similar to those of HTML elements; we do not
cover them here.

7.4 Ontologies and Web Directories

This section follows up with section 3.1, in which we described the method of learning lexical
indicators as simple information extraction patterns, with the help of a public web directory.
In this section, we suggest to extend this approach to a bootstrapping cycle of information
extraction and ontology learning18. A similar combination of information extraction and
ontology learning has previously been described by Maedche [50]. The main novelty of our
approach is however in the use of a public web directory.

7.4.1 Ontological Analysis of Web Directories

Web directory hierarchies are sometimes mistaken for ontologies; however, as already ob-
served by Uschold [93], they are rarely valid taxonomies. It is easy to see that subheadings
are often not specializations of headings; some of them are even not concepts (names of
entities) but properties that implicitly restrict the extension of a preceding concept in the
hierarchy. Consider for example .../Industries/Construction and Maintenance/Mate-
rials and Supplies/Masonry and Stone/Natural Stone/International Sources/Mexico.

17Admittedly, its main focus is multi-linguality rather than HTML-centred WIE.
18An overview of ontology learning as such can be obtained from [14, 49].



80 CHAPTER 7. FRAMEWORK AND ONTOLOGIES FOR WEB SPACE ANALYSIS

Table 7.2: Examples of interpretation rules
Rule no. Path pattern Ontology relation

1 Subj/Prop ‘Prop Subj’ is-a Subj
(or, Prop restricts Subj to ‘Prop Subj’)

2 Dom1/Dom2 Dom2 is-part-of Dom1
3 Obj1/Obj2 Obj2 is-a Obj1
4 Dom/Prop ‘Prop Dom’ is-part-of Dom

Rule no. Example
1 Publishers/Academic and Technical
2 Security/National Security
3 Electric Motors/AC Motors
4 Manufacturing/Electrical

Semantic interpretation of a representative sample of directory paths revealed that

• terms and phrases in individual headings belong to quite a small set of classes, and

• surface ‘parent-child’ arrangement of headings belonging to particular classes corre-
sponds (with a certain degree of ambiguity) to ‘deep’ ontological relations.

The result of this effort was a meta-ontology of directory headings plus a collection of inter-
pretation rules. The diagram at Fig. 7.7 depicts the essence19 of the meta-ontology. Boxes
correspond to classes, full edges to named relations, and dashed edges to the class-subclass
relationship. Reflexive binary relations are listed inside the respective boxes. Examples of
informally expressed interpretation rules are in Tab. 7.2.

7.4.2 Coupling Information Extraction and Ontology Learning

Plain indicator terms, gathered by means of the fully automated technique described in
section 3.1, are by themselves powerful enough to extract sentences that are likely to contain
some kind of interesting information about the company. We can even, in many cases, access
this information thanks to simple heuristics over the parse-tree, such as:

If the immediate object of the indicator verb is a generic set-semantic expres-
sion such as ‘range of’, ‘family of’, ‘assortment of’ etc. then output the indirect
attribute of the object; otherwise output the object itself.

Universal extraction patterns however impose strong assumptions on the whole collection of
indicators. A more sensitive method should take account of the classes of indicators/headings

19For better readability, we have e.g. omitted the notion of ‘Location’, which may also be important to
extract but is not directly related to the commercial profile of the company.
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Figure 7.7: The ontology of web directory headings
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revealed by ontological analysis. If we learn the indicators for each class of information (such
as ‘subjects’, ‘objects’ or ‘domains’) separately, we could be able to perform true information
extraction in the sense of filling database templates. Conversely, if the informative terms
thus discovered coincide with the headings of directory nodes referencing the particular page,
we can automatically ‘restore the identity’ of these headings. With the help of generic in-
terpretation rules such as those shown in Tab. 7.2, fragments of true taxonomies (possibly
several interconnected ones, for ‘subjects’, ‘objects’. . . , as specified by the meta-ontology)
could be built. We can understand this as a two-step ontology learning process using two
resources: text and the hierarchies of headings. Obviously, the result of this process will
still be rather incomplete, and should be enhanced using other ontology-learning techniques,
taking into account co-occurrences (and linguistic dependencies) of terms in the text beyond
the headings.

These two tasks represent a closed loop: as soon as we have classified the headings, we
can learn class-specific indicators20. From the other side: as soon as we have class specific
indicators, we can use them for the classification of headings. Since the first step in this loop
has to be done by a human, a more viable approach seems to be that starting by classifying
the directory headings. One more reason for this are some regularities and similarities in
the structure of Open Directory: some of the headings could thus be even classified semi-
automatically with the help of heuristic rules. Another interesting possibility is to classify
the headings by matching them to a generic lexical ontology such as WordNet.

20The class-specific indicators will apparently be more complex than the current ones.



Chapter 8

Problem Solving Methods of Web
Space Analysis

The idea of using Problem Solving Methods as models of web analysis applications is consid-
ered as one of major contributions of this thesis. We first briefly review the state of the art
in PSM-style modelling of ‘data-intensive’ tasks, then describe a newly developed library of
PSMs for web space analysis, demonstrate their usability to describe existing applications,
suggest an approach to automated composition of tools relying on PSM-based templates,
and, finally present a simulated experiment of such composition.

8.1 State of the Art

PSMs are mostly understood as specific for knowledge-intensive but ‘data-temperate’ tasks,
which are common in Artificial Intelligence realms. The question whether data-intensive
tasks could benefit from the introduction of PSMs has however come to the mind of several
researchers.

In the IBrow project [1], operational PSM libraries have been developed for two areas of
document search/analysis: Anjewierden [4] concentrated on analysis of standalone documents
in terms of low-level formal and logical structure, and Abasolo et al. [2] dealt with information
search in multiple external resources. Direct mining of websites was however not addressed;
IBrow libraries thus do not cope with the problem of web heterogeneity and unboundedness,
which motivated the development of the TODD framework. In contrast, the Armadillo system
[19] attempts to integrate many website analysis methods; it currently relies on workflows
manually composed from scratch by the user, although a template-based solution is also
being envisaged. Besides, PSM-based solution has also been developed for task configuration
in Knowledge Discovery in Databases (KDD) [24].

83
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8.2 Library of Deductive Web Mining PSMs

The textual descriptions of three core tasks introduced in chapter 7.1 only specify the input
and output of these tasks, in a style analogous to CommonKADS [69]. A natural next
step towards reusable knowledge models thus seems to be the identification of appropriate
problem-solving methods (cf. Section 6.2) and their representation in the form of inference
and task knowledge.

Let us now present a collection of eight PSMs for DWM. It is rather tentative, yet seems to
cover a large part of realistic cases; examples will be given in section 8.3.

For Classification, we could consider three PSMs. Look-up based Classification amounts to
picking the whole content of the given object (cf. the Overall Extraction PSM below), and
comparing it with content constraints (such as look-up table), which yields the class; for
example, a phrase is a Company Name if listed in business register. Compact Classification
also corresponds to a single inference, it is however not based on simple content constraints
but on some sort of computation (e.g. Bayesian classification), which is out of the scope of
the knowledge modelling apparatus. Finally, Structural Classification corresponds to classifi-
cation of an object based on the classes of related objects (sub–objects, super–objects and/or
neighbours). It is thus decomposed to retrieval of related objects, their individual classifi-
cation, and, finally, evaluation of global classification patterns for the current object. It is
therefore recursive1: its ‘inference structure’ typically contains full-fledged (Direct) Retrieval
and Classification tasks.

For Extraction, there will be again three PSMs, rather analogous to those of Classification.
Overall Extraction amounts to picking the whole content of the given object. Compact Extrac-
tion corresponds to a single inference based on possibly complex computation, which directly
returns the content of specific sub-object/s of the given ‘scope’ object. Finally, Structural
Extraction corresponds to extraction of information from an object via focusing on its certain
sub-objects. Such objects have first to be retrieved, then lower-grained extraction takes place,
and, finally, multiple content items possibly have to be integrated. Structural Extraction is
thus equally recursive as Structural Classification.

Finally, let us first introduce two PSMs for the Retrieval task. The upper inference structure2

at Fig. 8.1 corresponds to Direct Retrieval and the lower one to Index-Based Retrieval,
respectively. The names of inferences (in ovals) are mostly borrowed from the CommonKADS
library [69], while the knowledge roles are more DWM-specific. In Direct Retrieval, potentially
relevant objects are first retrieved based on structural (parthood and adjacency) constraints,
and then classified. Objects whose classes satisfy the class constraints are the output of the
method. In the absence of class constraints, the method reduces to the ‘specify’ inference.
In Index-based Retrieval, the (abstract) class constraints are first operationalised so that
they can be directly matched with the content of objects. Then the objects are retrieved

1The notion of recursion previously appeared in knowledge modelling literature, e.g. in the form of System-
atic Refinement as form of classification [92]. Here, however, the problem is more severe, since a recursively
processed data structure appears in a dynamic rather than static role (in the CommonKADS sense).

2We did not show inference structures for Classification and Extraction, due to limited space as well as due
to incompatibility of their structural variants with the CommonKADS notation, see below.
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Figure 8.1: Inference structures of Retrieval PSMs

in an index structure (which is considered as separate from the web space itself), possibly
considering structural constraints (provided structural information is stored aside the core
index).

An interesting issue related to the representation of above PSMs is the possible interaction of
different ‘time horizons’ in one application; static roles may become dynamic when changing
the time scale. For example, a typical DWM application may first build an index of a part
of the website (or learn class definitions from a labelled subset of objects), and then use the
index to efficiently retrieve objects (or use the class definitions to classify further objects).
This interaction deserves further study.
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Traditional vs. DWM Classification

Among the three tasks, it is Classification that is most appropriate for comparison with ex-
isting PSM research. Classification problem solving was recently systematised by Motta&Lu
[58]. Their taxonomy of classification problems is mainly derived from the presence (or ab-
sence) of a few key features:

1. Whether the goal is to find one, all or the best solution. This distinction can well be
ported to the DWM context.

2. Whether all observables are known at the beginning or are uncovered opportunistically
(typically at some cost) during the problem solving process. In DWM, the latter is
typically the case (provided we interpret ‘observables’ as the web objects themselves);
the cost is however only associated with download/analysis time, and its increase is
smooth—unlike e.g. medical applications, where addition of a single examination may
lead to abrupt increase of (financial or social) cost.

3. Whether the solution space is structured according to a refinement hierarchy. Presence
of class hierarchy is quite typical in DWM; in the Rainbow project, it is reflected in
concept taxonomies that constitute our ontology, see Section 7.1.

4. Whether solutions can be composed together or each presents a different, self-contained
alternative. We believe that in DWM, elementary classification will mostly be carried
out over disjoint classes, but can be superposed by multi-way classification with non-
exclusive class taxonomies. We discuss this option below, in connection with the refine
inference of Heuristic Classification.

Motta&Lu [58] also formulated a generic task-subtask decomposition template, which can be
instantiated for different task settings:

1. First the observations have to be verified whether they are legal (Check).

2. All legal observations (〈feature,value〉-pairs) have to be scored on how they contribute
to every possible solution in the solution space (MicroMatch).

3. Individual scores are then aggregated (Aggregate).

4. Candidate solutions are determined via aggregated scores (Admissibility).

5. Final solutions are selected among candidate solutions (Selection) .

Compared to this generic Classification template, our notion of DWM classification is slightly
simplified and more goal-driven. Some parts of Structural Classification PSM can be mapped
on the generic template: classification from lower level of recursion is similar to MicroMatch,
while evaluation of global pattern unites the Aggregage, Admissibility and Selection steps.
There is no Check step (since no observations are known a priori), but an extra step of Re-
trieval (since objects relevant for classification of current object have first to be determined).
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We can also compare Structural Classification with the well-known Clancey’s Heuristic Clas-
sification (HC) [20], consisting of abstract, match and refine inferences; note that HC was
also chosen as the default PSM for classification by Motta&Lu [58], who defined all other
models as its reductions. In (DWM) Structural Classification, the abstract inference is re-
placed with classify inferences applied on related (contained and/or adjacent) objects; this is
due to the ‘object-relation-object’ (rather than ‘object-feature-value’) character of web data
representation. The match inference from HC corresponds to ‘evaluation of global classifi-
cation patterns’. Finally, a refinement from general to case-specific solution might rather
have the form of classification according to multiple hierarchies in DWM. The object is then
assigned to the class that is defined as intersection of both original classes. For example, in
the pornography application (section 8.3.1), an object classified as Image Gallery may also
be independently classified as Scarce Text Fragment, which yields the class Porno Index. An-
other example was shown in section 7.2.2, where two taxonomies were merged, one based on
HTML analysis and the other on link topology analysis. Based on large overlap in data, the
‘HTML’ concept of ProductCatalogue and the ‘topological’ concept of LocalHub were unified
to the concept of “product catalogue referring to child documents with detailed information
about the offered products” (say, ‘ComplexProductCatalogue’).

8.3 Example Descriptions of DWM Applications

Syntax of the Semi-Formal Language

Let us now describe concrete applications in terms of the TODD framework, including the
mapping of tasks to PSMs. For this purpose, we will use an ad hoc semi-formal language
with Prolog-like syntax. Its building blocks are decompositions of tasks (‘heads of clauses’)
to ordered sequences of subtasks (‘bodies of clauses’). Individual task descriptions (‘literals’)
look as follows, respectively:

Cla?(<obj_var>, <obj_type>, <data_type>, <domain>, <classes>)
Ret?(<obj_var>, <obj_type>, <data_type>, <domain>, <constraints>)
Ext?(<obj_var>, <obj_type>, <data_type>, <domain>, <content>)

The ‘predicate’ (task name) corresponds to the first dimension in the TODD framework.
An extra letter is used to distinguish the PSMs introduced in the previous sections: ClaS
for Structural Classification, ClaL for Look-up based Classification, ClaC for Compact Clas-
sification; RetD for Direct Retrieval, RetI for Index-based Retrieval; ExtS for Structural
Extraction, ExtC for Compact Extraction and ExtO for Overall Extraction. From the nature
of the PSMs follows that each ClaS task can be decomposed to a structure including (among
other) one or more subtasks of type Classification; analogously, each ExtS task can be de-
composed to a structure including one or more subtasks of type Extraction. In the examples,
the ‘unification’ of a ‘goal’ with a ‘clause head’ is always unique; the representation is only
‘folded’ for better readability.
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The remaining three dimensions of the TODD model are reflected by the ‘arguments’ <obj type>,
<data type> and <domain>:

• <obj var> is variable referring to the ‘current’ object of the task instance: input object
in the case of Classification and output object/s in the case of Retrieval. We use object
variables (and object types) even for Extraction; however, here they only refer to the
scope of extraction, not to a ‘current’ object as in Classification and Retrieval.

• <classes> is the list of classes distinguished in the classification task (beside named
classes, we use the symbol @other for a ‘complement’ class).

• <constraints> is the list of logical expressions determining the set of objects to be
retrieved; they correspond to the knowledge roles Class Constraints (class membership
restrictions) and Structural Constraints (parthood/adjacency restrictions).

• <content> is the list of types of content information (datatype properties in semantic
web terminology) to be extracted.

For simplicity, we ignore strictly procedural constructs such as selections or iterations, as well
as the cardinality of input and output.

Overview of Applications Described

We first describe the Rainbow applications: pornography-recognition application [95] (Ta-
ble 8.1) and two variants of bicycle offer extraction [45] (Tables 8.2 and 8.3). Then we, for
better coverage, attempt to describe three DWM methods from the literature: the company
website classification method by Ester et al. [25] (Table 8.4), the information extraction ap-
plication for foundry websites by Krötzch & Rösner [42] (Table 8.5), and the bootstrapping
approach to website information extraction by Ciravegna et al. [19] (Table 8.6) . The com-
mon aspect of all of them is the effort to overcome the limitations of single resource and/or
single representation in web mining. However, the symbol-level principles of the methods are
different: the first relies on probabilistic reasoning, the second on a mix of domain-specific
heuristics, and the third on shallow NLP augmented with knowledge reuse. Due to limited
space, we sometimes slightly simplify the structure of applications, without affecting their
core principles.

8.3.1 Pornography-Recognition Application

The upper level of the pornography-recognition process is an instantiation of the Structural
Classification PSM as discussed in the previous section. In order to classify the whole website
(i.e. document collection), symptomatic ‘out-tree’ topology structures are first sought; their
sources (local hubs) can possibly be identified with ‘index’ pages with image miniatures. To
verify that, the hub is examined for presence of ‘nudity’ PICS rating in META tags (Look-up
Classification PSM), for presence of indicative strings in the URL, and its whole HTML code
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Table 8.1: TODD-based description of pornography application

ClaS(DC, DocCollection, _, Pornography, [PornoSite,@other]) :-
RetD(D1, Document, topology, General, [D1 part-of DC, LocalHub(D1)]),
ClaS(D1, Document, _, Pornography, [PornoIndex,@other]),
RetD(D2, Document, topology, General, [D2 follows D1]),
ClaS(D2, Document, _, Pornography, [PornoContentPage,@other]).

% classification of index page
ClaS(D, Document, _, Pornography, [PornoIndex,@other]) :-

ClaL(D, Document, meta, Pornography, [PornoResource,@other]),
ClaS(D, Document, url, Pornography, [PornoResource,@other]),
RetD(DF, DocFragment, html-txt, General, [DF part-of D, ImgGallery(DF)]),
ClaC(DF, DocFragment, freq, General, [ScarceTextFragment,@other]).

% classification of content page
ClaS(D, Document, _, Pornography, [PornoContentPage,@other]) :-

ClaL(D, Document, meta, Pornography, [PornoResource,@other]),
RetD(Im, Image, html-txt, General, [Im referenced-in D]),
ClaC(Im, Image, image, Pornography, [PornoImage,@other]).

is searched for ‘image gallery’-like structures with low proportion of text (which distinguishes
pornography from regular image galleries). The analysis further concentrates on individual
pages referenced by the hub, and attempts to identify a single dominant image at each of
them. The images are then analysed by (bitmap) image analysis methods; in particular, the
proportion of body colour and the central position of a dominant object are assessed. In
the description, we omit the ‘evaluation of global classification pattern’ subtasks, for brevity;
their inclusion would be straightforward.

8.3.2 Bicycle Application

Navigational Data Access

The start-up scenario for extraction of user-oriented information from bicycle-selling sites is
centred around navigation-based access to individual pages; in the version described here, we
use URL analysis for this purpose. Subsequently, statistical extraction (Hidden Markov Mod-
els) is applied to obtain structured information (products, company address), while phrasal
patterns are applied on the (presumably) free text describing the overall company profile. All
Retrieval tasks (for navigation-based access to pages as well as at the level of phrases in the
last subtask) are mapped on the Direct Retrieval PSM. Most Extraction tasks shown corre-
spond to Structural Extraction. However, at the lowest level, company address is obtained via
Compact Extraction, and company description (sentences) are obtained via Overall Extrac-
tion. Product information is still a Structural Extraction; if we decomposed it further (not
shown in the code), it would however consist of Compact Extraction followed with integration
of individual information (names, prices and the like) to a more complex structure.

We omit other types of analysis included in the application (topology, META tags, images),
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Table 8.2: TODD-based description of bicycle application with navigation

ExtS(DC, DocCollection, _, Bicycle, [products, comp_addr, comp_descr]) :-
ExtS(DC, DocCollection, _, Bicycle, [products]).
ExtS(DC, DocCollection, _, Company, [comp_descr]).
ExtS(DC, DocCollection, _, Company, [comp_addr]).

% extraction of product information from catalogue pages
ExtS(DC, DocCollection, _, Bicycle, [products]) :-

RetD(D, Document, url, Company, [D part-of DC, ProductCatalogue(D)]),
ExtS(D, Document, html, Bicycle, [products]).

% extraction of company address from the contact page
ExtS(DC, DocCollection, _, Bicycle, [comp_addr]) :-

RetD(D, Document, url, Company, [ContactPage(D)]),
ExtC(D, Document, html, Company, [comp_addr]).

% extraction of general company profile from the profile page
ExtS(DC, DocCollection, _, Bicycle, [comp_descr]) :-

RetD(D, Document, url, Company, [D part-of DC, ProfilePage(D)]),
RetD(P1, Phrase, text, Company, [P1 part-of D, ProfilePhrase(P1)]),
RetD(P2, Phrase, text, General, [Sentence(P2), P1 part-of P2]),
ExtO(P2, Phrase, text, General, [comp_descr]).

Table 8.3: TODD-based description of bicycle application with index

...
ExtS(DC, DocCollection, _, Bicycle, [products, ...]) :-

RetI(P, Phrase, text, Company, [P part-of DC, ProductCataloguePhrase(P)]),
RetI(DF, DocFragment, html-tree, General, [DF contains P]),
ExtC(DF, DocFragment, html, Bicycle, [products]),
...

for brevity.

Index-Based Data Access

Among alternative methods of page access, we are seriously considering the one taking full
advantage of the available XML database engine (AmphorA), with its capability of term
indexing combined with XML indexing. The parts of website suitable for detailed extrac-
tion can be efficiently detected via lexical indicators (e.g. phrases typically occurring nearby
product catalogues): some sort of XML environment of the indicators can then be submit-
ted to the extraction tool. Since the overall structure of the application is analogous to the
previous one, we only show a fragment, in which Index-based Retrieval of indicative phrases
plus Index-based Retrieval of ‘mark-up environment’ (in a native XML database storing the
HTML trees) appears.
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Table 8.4: TODD-based description of application by Ester et al.

ClaS(DC, DocCollection, _, Company, TopicSet) :-
RetD(D, Document, topology, Company, [D part-of DC]),
ClaC(D, Document, freq, Company, TopicSet),
ClaC(DC, DocCollection, freq, Company, TopicSet).

Table 8.5: TODD-based description of application by Krötzch&Rösner

ExtS(DC, DocCollection, _, Foundry, [products, customers, certificates]) :-
RetD(D, Document, html, Company, [D part-of DC, InfoPage(D)]),
ExtS(D, Document, _, Foundry, [products]),
ExtS(D, Document, _, Company, [customers]),
ExtS(D, Document, _, Company, [certificates]).

% product information extraction
ExtS(D, Document, _, Foundry, [products]) :-

RetD(DF, DocFragment, html, General, [DF part-of D, ContentTable(DF)]),
ExtS(DF, DocFragment, html, Foundry, [products]).

% customer information extraction
ExtS(D, Document, _, Company, [customers]) :-

RetD(P1, Phrase, text, Company, [P1 part-of D, CustomerPhrase(P1)]),
RetD(P2, Phrase, parse-tree, General, [P2 depends-on P1]),
ExtO(P2, Phrase, text, General, [customers]),

% certificate extraction
ExtS(D, Document, _, Company, [certificates]) :-

RetD(P1, Phrase, text, Company, [P1 part-of D, QualityPhrase(P1)]),
RetD(P2, Phrase, parse-tree, General, [CertName(P2), P2 depends-on P1]),
ExtO(P2, Phrase, text, General, [certificates]).

8.3.3 Website Mining by Ester et al.

The method is not knowledge-based: it relies on Bayesian classification of individual docu-
ments (wrt. topics) over the feature space of terms, and then again on Bayesian classification,
this time of the whole website (i.e. document collection) over the feature space of individual
document’s topics. Hence, the overall task pattern amounts to Structural Classification sim-
ilar to the pornography-recognition task, while the embedded (Bayesian) classifications are
Compact.

8.3.4 Company Profile Extraction by Krötzch&Rösner

The overall scheme is similar to the bicycle application, except that product information is
only extracted from tables (via heuristics), while phrasal patterns are used in a finer way, to
extract not just sentences but names of either customers or quality certificates.
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8.3.5 Bootstrapping Information Extraction by Ciravegna et al.

The approach described in [19] heavily relies on knowledge reuse, thanks to the well-known
redundancy of WWW information. We only describe the most elaborated part of the method,
targeted at extraction of person names (additionally, various personal data and paper titles
are extracted for the persons in question). First, potential names are cropped from the
website, and checked against binary classification tools such as context-based named-entity
recognisers (Compact Classification), as well as against public search tools (namely, online
bibliographies, homepage finders and general search engines) that produce the same binary
classification (person name - yes/no) as by-product of offering information on papers or
homepages (i.e. Index-based Retrieval). Furthermore, for the results of general web search,
the page from the given site is labelled as homepage if the name occurs in a particular
(typically, heading) tag. The seed names obtained are further extended by names co-occurring
in a list or in the same column of a table. Finally, potential person names from anchors of
intra-site hyperlinks are added.

8.4 Template-Based Composition of DWM Services

8.4.1 Templates in Web Service Composition

Composition3 of simple web services into sophisticated (distributed) applications recently
became one of hottest topics in computer science research. The area of application for
(composite) web-services is potentially quite wide. While the focus is most often on B2B
transactions and financial services, the general paradigm appears useful even for less critical
tasks such as organisation of scientific events [90] or information harvesting from the surface
web, which is the focus of the thesis.

Three alternative research streams can be identified:

1. Programming in the large, i.e. composition of services by (more-or-less) traditional pro-
cedural programming in languages such as BPEL4WS4, inspired by workflow research.
This stream is the only one recognised by most of the industrial IT community, to date;
its main advantage is perfect control over the choice and linkage of different services, at
design time. This however, on the other hand, entails a rather low degree of flexibility
at run time.

2. Planning in artificial intelligence style, based on pre- and post-conditions of individual
services without pre-specified control flows, as in OWL-S [5]. This approach offers
extreme flexibility; however, the results may be quite unpredictable if all conditions are
not perfectly specified, which may often be difficult in real environments.

3. Template-based composition, in which concrete services are filled in run time into pre-
fabricated templates [51, 90].

3Other terms such as ‘choreography’ or ‘configuration’ are also frequently used.
4http://www-128.ibm.com/developerworks/library/ws-bpel



8.4. TEMPLATE-BASED COMPOSITION OF DWM SERVICES 93

Table 8.6: TODD-based description of an Armadillo application

ExtS(DC, DocCollection, _, CSDept, [names]) :-
RetD(P1, Phrase, text, General, [P1 part-of DC, PotentPName(P1)]),
% named entity recognition for person names
ClaC(P1, Phrase, text, General, [PName,@other]),
% use of public search tools over papers and homepages
RetI(P2, Phrase, freq, Biblio, P1 part-of P2, PaperCitation(P2)]),
RetI(D, Document, freq, General, [P1 part-of D, D part-of DC, PHomepage(D)]),
RetD(DF1, DocFragment, freq, General,

[Heading(DF1), DF1 part-of D, P1 part-of DF1),
ExtO(P1, Phrase, text, General, [names]),
% co-occurrence-based extraction
RetD(DF2, DocFragment, html, General,

[ListItem(DF2), DF2 part-of DC, P1 part-of DF2]),
RetD(DF3, DocFragment, html, General,

[ListItem(DF3), (DF3 below DF2; DF2 below DF3)]),
ExtS(DF3, DocFragment, text, General, [names]),
RetD(DF4, DocFragment, html, General,

[TableField(DF4), DF4 part-of DC, P1 part-of DF4]),
RetD(Q, DocFragment, html, General,

[TableField(DF5), (DF5 below DF4; DF4 below DF5)]),
ExtS(DF5, DocFragment, text, General, [names]),
% extraction from links
RetD(DF5, DocFragment, html, General,

[IntraSiteLinkElement(DF5), DF5 part-of DC]),
ExtS(DF5, DocFragment, text, General, [names]),
...

% extraction of potential person names from document fragments
ExtS(DF, DocFragment, text, General, [names]) :-

RetD(P, Phrase, text, General,
[DF contains P, PotentialPersonName(P)]),

ExtO(P, Phrase, text, General, [names]).
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Most recently, ten Teije et al. [90] suggested to view web service composition templates as
analogy to problem solving methods (PSMs), i.e. abstract descriptions of knowledge-based
reasoning scenarios, which have been intensely studied in the knowledge modelling community
for nearly two decades (see section 6.2). In addition, they suggested to view the configuration
of the template again as a kind of reasoning task, namely, that of parametric design. Each
concrete application is assumed to be specified (in sufficient detail) merely as combination
of values assigned to a fixed set of parameters. The configuration process is carried out by
a so-called broker tool, and employs the propose-critique-modify (PCM) reasoning method5,
taking advantage of background knowledge of the broker. As the approach taken in this thesis
directly builts on ten Teije’s work, we describe the parametric design approach in more detail
in the next subsection.

8.4.2 Configuration of Web Services as Parametric Design

Current approaches to Web service configuration are often based on pre/post-condition-style
reasoning. Given descriptions of elementary Web services, and the required functionality
of the composite Web service, they aim to try to construct a ‘plan’ of how to compose
the elementary services in order to obtain the required functionality. In [90], we instead
proposed a knowledge intensive approach to the creation of composite Web services. We
described a complex Web service as a fixed template, which must be configured for each
specific use. Web service configuration can then be regarded as parametric design, in which
the parameters of the fixed template have to be instantiated with appropriate component
services. During the configuration process, we exploit detailed knowledge about the template
and the components, to obtain the required composite web service. Whereas in other work the
main metaphor is “Web service configuration = planning” (i.e. generalised reasoning based
on only component specifications), our approach is based on the metaphor “Web service
configuration = brokering” (i.e. reasoning with specialised knowledge in a narrow domain).
A planner is assumed to be domain-neutral : it is supposed to work on any set of components,
simply given their descriptions. A broker on the other hand exploits specific knowledge about
the objects it is dealing with. In the remainder of this section, we describe how such a broker
can be equipped with configuration knowledge on how to combine these web services.

Parametric Design

Parametric design is a simplification of general configuration. It assumes that the objects to
be configured (in our case: complex Web services) have the same overall structure that can
be captured by templates. Variations on the configuration can only be obtained by choosing
the values of given parameters within these templates. We will show that for specific type of
web services, namely classification services, this is indeed possible.

An existing reasoning method (PSM) for parametric design is Propose-Critique-Modify, or
PCM for short [13]. The PCM method consists of four steps:

5I.e. a ‘meta-level’ PSM with respect to that incorporated in the template itself.
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• The propose step generates an initial configuration. It proposes an instance of the
general template used for representing the family of services.

• The verify step checks if the proposed configuration satisfies the required properties of
the service. This checking can be done by both pre/post-condition reasoning, or by
running the service.

• The critique step analyses the reasons for failure that occurred in the verification step:
it indicates which parameters may have to be revised in order to repair these failures.

• The modify step determines alternative values for the parameters identified by the
critique step. The method then loops backto the verify step.

The propose-critique-modify method for Parametric Design requires specific types of config-
uration knowledge to drive the different steps of the configuration process. The question is
whether this configuration knowledge (PCM knowledge) can be identified for large classes of
Web services. It turns out that this is indeed possible for a specific class of web services,
namely, classification ones.

Application on Classification Services

The common definition of classification is [74]: “Classification problems begin with data
and identify classes as solutions. Knowledge is used to match elements of the data space to
corresponding elements of the solutions space, whose elements are known in advance.” More
formally, classification uses knowledge to map observations (in the form of 〈feature,value〉-
pairs) to classes.

Based on the work by Motta&Lu [58], we assume that classification services can be described
in a single template. This template (see Section 8.2) consists of five steps: Check, MicroMatch,
Aggregate, Admissibility and Selection.

This structure constitutes the overall template for classification services, which can be easily
captured in current Web service description languages such as OWL-S [5]. Example values
of Admissibility parameter are (see [90] for more):

• weak-coverage: All 〈feature,value〉 pair in the observations are consistent with the fea-
ture specifications of the solution.

• strong-coverage: All 〈feature,value〉 pair in the observations are consistent with the
feature specifications of the solution and explained by them.

• strong-explanative: All 〈feature,value〉 pair in the observations are consistent with the
feature specifications of the solution, explained by them, and all features specified in
the solution are present.

The value of Selection parameter then decides whether e.g. the number of unexplained and
missing features is considered in ranking candidate solutions.
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The broker may employ e.g. the following pieces of knowledge:

• Propose knowledge for the Admissibility parameter: if many 〈feature,value〉 pairs are
irrelevant then do not use strong-coverage.

• Critique knowledge for the Selection parameter: if the solution set is too small or too
large then adjust the Admissibility or the Selection parameter.

• Modify knowledge for the Admissibility parameter: if the solution set has to increased
(reduced) in size, then the value for the Admissibility parameter has to be moved down
(up) in the following partial ordering:
weak-coverage ≺ strong-coverage ≺ strong-explanative.

A prototype PCM broker has been successfully applied on real data in the domain of confer-
ence paper classification (for reviewer assignment).

8.4.3 Rainbow Applications as Composite Web Services

For the first composite application of Rainbow, a few hundred lines of Java code sufficed to
weave together the tools cooperating in the analysis of bicycle websites (see section 4.2.2).
However, with increasing number of available tools, composition by traditional programming
soon becomes cumbersome. On the other hand, the space of suitable tools will hardly be as
borderless as in semantic-web scenarios of information search, which are assumed amenable
to planning approaches. The template-based approach thus looks as a reasonable compromise.
The collection of PSMs abstracted from real deductive web mining applications, explained
in section 8.2, could be basis for templates. Furthermore, individual components (services)
can be positioned in the TODD multi-dimensional space, which could, among other, play a
similar role as the space of template parameters from [90].

An important point is to evaluate the possibility to adapt the parametric design approach
from [90] to the (specific features of) web analysis PSMs; this is the subject of the next
subsection. Main focus will be on classification, which is the only task considered in [90] and
also one of tasks studied in this thesis.

8.4.4 DWM Service Configuration as Parametric Design

Limitations of Fixed Template

As we outlined in section 8.2, the PSMs for deductive web mining tend to involve recursion: a
reasoning process starting at one object is successively redirected to other objects in its part-
hood or neighbourhood. This more-or-less disqualifies reasoning methods relying on a single
and entirely fixed feature template, of which parametric design is a typical representative.
There seem to be at least two possible solutions to this problem:
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1. to allow for multiple templates per task, differing in the number of ‘sibling’ sub-tasks and
degree of recursion, and to include heuristics for template selection as part of broker
knowledge.

2. to modify the parametric design algoritm to involve, in addition to setting parameter
values, also template-restructuring operations such as subtask replication and recursive
unfolding (i.e. replacement of parameter with a whole template for processing a different
object).

In the rest of this chapter, we outline the first solution, since it is easier to design and
implement in its rudimentary form; it obviously oversimplifies many aspects of real-world
settings.

Description of Templates

Table 8.7 shows five templates for the classification task (encoded in Prolog): the first amounts
to single classification of the current object, the second aggregates two different ways of clas-
sifying the current object, the third and the fourth rely on another object (sub-object or
adjacent object) in order to classify the current object, and the fifth combines direct classifi-
cation of current object with its structural classification (via classification of another object).
The arguments of the templ clauses amount to the following: template identifier (sc#), com-
posed service signature, list of component services signatures (one for each ‘empty slot’), list
of ontological constraints among object types (classes). Each signature (i.e. s() structure)
first defines the task type accomplished by the service; the numbers (0, 1, ...) have the seman-
tic of variables that either refer to objects or to slots themselves (0 being the ‘start-up’ object
of the composed service), and the Prolog variables Tp# correspond to types (or classes) of
these objects. In addition to classification (cla) and retrieval (ret) services types, the tem-
plates also include slots for auxilliary services needed to accomplish the target classification
task. As types of auxilliary services, we so far considered aggregation (agr), transformation
(tsf) and iteration (not shown here). For example, the presence of sub-object of certain class
determines the class of the super-object in a certain way. In particular, the certainty factor of
classification of sub-object is transformed to certainty factor of classification of super-object;
the data flow between the services is indicated by the ref(SourceService,SourceObject)
construct6. Similarly, classification of the same object by different methods has to be com-
pared and the result computed via aggregation (e.g. combining the certainty factors).

6This method of combining control flow and data flow is rather cumbersome and is likely to be replaced
with a smarter one in a real web service composition language.
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Table 8.7: Sample templates for classification task

templ(sc1,s(cla,0,0,Tp1,Tp2),
[s(cla,0,0,Tp3,Tp4)],[subclasseq(Tp3,Tp1),subclasseq(Tp4,Tp2)]).

templ(sc2,s(cla,0,0,Tp1,Tp2),
[s(cla,0,0,Tp3,Tp4),s(cla,0,0,Tp5,Tp4),
s(agr,[ref(1,0),ref(2,0)],0,Tp4,Tp4)],
[subclasseq(Tp3,Tp1),subclasseq(Tp5,Tp1),subclasseq(Tp4,Tp2)]).

templ(sc3,s(cla,0,0,Tp1,Tp2),
[s(ret,0,1,Tp3,Tp4),s(cla,1,1,Tp5,Tp6),s(tsf,ref(2,1),0,Tp6,Tp2)],
[subclasseq(Tp3,Tp1), rel(part,Tp4,Tp3), subclasseq(Tp4,Tp5)]).

templ(sc4,s(cla,0,0,Tp1,Tp2),
[s(ret,0,1,Tp3,Tp4),s(cla,1,1,Tp5,Tp6),s(tsf,ref(2,1),0,Tp6,Tp2)],
[subclasseq(Tp3,Tp1),rel(adj,Tp4,Tp3),subclasseq(Tp4,Tp5)]).

templ(sc5,s(cla,0,0,Tp1,Tp2),
[s(cla,0,0,Tp3,Tp4),s(ret,0,1,Tp5,Tp6),s(cla,1,1,Tp7,Tp8),
s(tsf,ref(3,1),0,Tp8,Tp4),s(agr,[ref(1,0),ref(4,0)],0,Tp4,Tp4)],
[subclasseq(Tp3,Tp1),subclasseq(Tp5,Tp1),rel(part,Tp6,Tp5),
subclasseq(Tp6,Tp7),subclasseq(Tp4,Tp2)]).

8.5 Simulation of Template Configuration and Execution

8.5.1 One-Shot Setting Without Broker Knowledge

As seen from the above discussion, there are several differences from the seminal work by ten
Teije et al., most important:

• We do not have a single template but a choice of multiple ones

• For the individual template slots, we don’t deal with a clearly defined family of different
methods (variations of a method) but with a theoretically borderless space of applicable
tools.

It was therefore natural to start with a fragment of the original Parametric Design model
only, namely, with its Propose and Verify (in the sense of service execution) only. Although
broker knowledge would be desirable (and was used by ten Teije) for the Propose phase, it
was not indispensable, and we could perform service configuration based on the signatures in
the templates only. The use of broker knowledge is only discussed in the following subsection.

One-Shot Setting Without Broker Knowledge

We implemented a collection of simple programs in Prolog consisting of:

1. the five templates discussed in the previous sections
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2. four simulated ’websites’ (inspired by real ones), in clausal form, an example is in
Table 8.8

3. simplified services (incl. auxilliary ones) operating on ’website clauses’ and equipped
with meta-data

4. a configuration tool that selects and fills in the templates based on service meta-data

5. an execution tool that executes the filled template for a given data object

6. an ’ontology’ (derived from the UWO and its sub-models, see section 7.2) containing
definitions of basic concepts required for the composition and/or execution phase.

The whole setting is very rudimentary. The service slots in templates are limited to a single
object on input and on output. The classification services only perform binary classification,
i.e. they output a certainty factor for a single class on output (distinguishing it from its com-
plement). The classes amount to pornography-relevant ones, such as pornography-containing
site or pornography content page.

Composition Phase

Table 8.9 shows two examples of service composition. The first one suggests two ways of
classifying a document as pornoContentPage, based on two different templates: either by
directly classifying the document or by first retrieving and classifying its follow-up document
and then transforming the certainty factor. The second one suggests to classify a site by
retrieving and classifying its hub page.

Execution Phase

The composed services can then be executed. For example, we can call the already configured
template sc4 from above using the ID of input object, its initial class (e.g. just document as
generic type) and the certainty factor of this class (it should be 1 in this case). The execution
engine returns the ID of output object (for a classification task, it is identical to input object),
its suggested class (here, pornoContentPage), and the certainty factor of this refined class.
The results can be compared with ’gold standard’ data and thus provide a simple form of
verification of the configuration.

8.5.2 Towards a Complete Parametric Design Cycle

Tentative Broker Knowledge

While the initial configuration of the template (’propose’ phase) could be accomplished us-
ing ’semantic signatures’ of individual services only, its subsequent automated modification
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requires additional knowledge. Tentative examples of such knowledge have been formu-
lated in [85]. Compared to broker knowledge from [90], they also include template selec-
tion/reformulation knowledge in addition to slot-filling knowledge. They are limited to Pro-
pose knowledge, which is relevant for initial setting of parameters. Note that, in our multiple-
template version, broker knowledge relates to template selection as well as to specification of
arguments for all subtasks within the template:

• Templates with lower number of distinct objects (X, Y, Z, ...) should be preferred.

• Non-recursive templates should be preferred; moreover, look-up classification should be
preferred to compact classification.

• Default partial ordering of data types with respect to object classification, for Document
object (may be overridden in a domain context):
frequency � URL � topology, free text � metadata

• URL-based or topology-based classification (as rather unreliable kinds of services)
should never be used alone, i.e. can only be filled into a template with ‘parallel’ classi-
fication of same object, such as SC2 or SC4

• Default partial ordering of types of relations (@rel) to be inserted into classification
template (may be overridden in a domain context):
part-of � is-part � adjacent

• Preference of domains used in structural classification,with respect to the domain of
current object: same domain � super-domain � other domain.

• The class of object determined by a Classification sub-task should be (according to
domain knowledge) sub-class of the class of objects determined by the immediately
preceding Retrieval sub-task in the template.

These heuristics are merely tentative, to illustrate the variety of possible broker knowledge
for DWM applications.

Example of Broker-Based Composition

Let us further show a hypothetical scenario of the use of broker knowledge, in connection
with the pornography-recognition application from section 8.3.1.

Let us assume a web pornography ontology7 grafted upon the Upper Web Ontology and
containing among other the following description-logic axioms:

PornoSite same-class-as (WebSite and (has-part some PornoIndex))
PornoIndex same-class-of (LocalHub and (followed-by >1 PornoContentPage))

7This ontology has actually been developed in DAML+OIL, by the authors [83].
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For an application recognising pornography websites, the broker would select the template
SC3, which is simpler than SC4; neither SC1 nor SC2 would be applicable (assuming no ser-
vice was able to recognise PornoSite by Look-Up or Compact Classification). In attempting
to fill SC3 in, it would seek a class of related object that could help determine the class of
current object. With the help of the first axiom, it finds out that PornoIndex could serve for
the purpose (as part of sufficient condition); it will thus accordingly instantiate the Classifi-
cation sub-task. Then it will determine, by the second axiom, a suitable class of objects to
be retrieved in the preceding (Retrieval) sub-task as LocalHub; since this is not a pornogra-
phy concept but generic concept, Domain1 will be set to General. Finally, it finds out that
LocalHub cannot be recognised as PornoIndex merely by Look-Up or Compact Classification.
It will thus have to create another SC3 template, on the second level, in order to recognise
PornoIndex by means of PornoContentPages following it in the link topology.
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Table 8.8: Incomplete example of simulated ‘website’ in clausal form

site(s2).
class(s2,nonporno).

page(p21). % index page with 5 html fragments and no pictures
url_of(u21,p21).
part(p21,s2).
textprop(p21,0.9). % proportion of text on page
part(f211,p21).
html_frag(f211). % fragment 1
part(f212,p21).
html_frag(f212). % fragment 2
part(f213,p21).
html_frag(f213). % fragment 3
part(f214,p21).
html_frag(f214). % fragment 4
part(f215,p21).
html_frag(f215). % fragment 5

page(p22). % text only page with 2 html fragments and no pictures
url_of(u22,p22).
part(p22,s2).
linkto(p21,p22).
textprop(p22,0.9). % proportion of text on page
part(f221,p22).
html_frag(f221). % fragment 1
part(f222,p21).
html_frag(f222). % fragment 2

page(p23). % page with 2 html fragments and 1 picture
url_of(u23,p23).
url_terms(u23,[hot]).
part(p23,s2).
linkto(p21,p23).
textprop(p23,0.8). % proportion of text on page
part(f231,p23).
html_frag(f231). % fragment 1
part(i2311,f231).
image(i2311).
body_color(i2311,0.1).
part(f232,p23).
html_frag(f232). % fragment 2
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Table 8.9: Service composition dialogue

?- propose(cla, document, pornoContentPage).
Number of solutions: 2
Template: sc1
Configuration:
s(cla, 0, 0, document, pornoContentPage, cla_por_url)
Template: sc4
Configuration:
s(ret, 0, 1, document, document, ret_follows)
s(cla, 1, 1, document, pornoContentPage, cla_por_url)
s(tsf, ref(2, 1), 0, pornoContentPage, pornoContentPage, tsf_porno2)

?- propose(cla, doc_coll, porno_coll).
Number of solutions: 1
Template: sc3
Configuration:
s(ret, 0, 1, doc_coll, localhub, ret_localhub)
s(cla, 1, 1, document, pornoContentPage, cla_por_url)
s(tsf, ref(2, 1), 0, pornoContentPage, porno_coll, tsf_porno1)
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Summary and Prospects

The presented habilitation thesis attempted to show that reuse of resources (software com-
ponents and data collections) as well as conceptual models (ontologies and PSMs) is useful
for efficient analysis of the web space. Most concrete examples were taken from the Rainbow
project (http://rainbow.vse.cz), which is coordinated by the author.

As the exploitation of web content and structure is by far not a resolved problem, the moti-
vation for extending the outcomes of the Rainbow project, presented in this thesis, is high.
The most interesting research goals can be summarised as follows:

• To automatically build web analysis applications on the fly, using ontological descrip-
tions of individual tools

• To effectively combine inductively learnt information extraction models with wrapper
ontologies, for newly addressed domains.

• To make full benefit of the available XML indexing and querying technology as pre-
processor to knowledge-based analysis, capable of providing an appropriate XML envi-
ronment to the knowledge-based web analysis tools.

The author and his collaborators envisage to focus on these issues in the framework of several
newly commenced EU-funded projects, from 2006 on.
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[42] Krötzch, S., Rösner, D.: Ontology based Extraction of Company Profiles. In: Workshop
DBFusion, Karlsruhe 2002.

[43] Kushmerick, N., Weld, D. S., Doorenbos, R.: Wrapper Induction for Information Ex-
traction. In: Intl. Joint Conference on Artificial Intelligence (IJCAI), 1997.
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[64] Praks, P., Dvorský, J., Snášel, V.: Latent semantic indexing for image retrieval systems.
In: Proceedings of the SIAM Conference on Applied Linear Algebra (LA03), Williams-
burg, USA.

[65] Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech
recognition. In: Proceedings of the IEEE, 77(2), 1989.

[66] Riloff, E., Jones, R.: Learning Dictionaries of Information Extraction by Multi-Level
Bootstrapping. In: Proc. 16th Nat. Conf. Artificial Intelligence (AAAI-99).

[67] Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A.,
Feier, C., Bussler, C., and Fensel, D.: Web Service Modeling Ontology, Applied Ontology,
1(1): 77–106, 2005.

[68] Sabou, M.: Learning Web Service Ontologies: an Automatic Extraction Method and its
Evaluation. In: [14].

[69] Schreiber, G., et al.: Knowledge Engineering and Management. The CommonKADS
Methodology. MIT Press, 1999.

[70] Sleator, D., Temperley, D.: Parsing English with a Link Grammar. In: Third Interna-
tional Workshop on Parsing Technologies, August 1993.

[71] Soderland, S.: Learning Information Extraction Rules for Semi–Structured and Free
Text. Machine Learning, Vol. 34, 1999, 233–272.



112 BIBLIOGRAPHY

[72] Staab S., Studer R., eds.: Handbook on Ontologies. International Handbooks on Infor-
mation Systems, Springer 2004.

[73] Stanyer D., Procter R.: Human Factors and the WWW: Making sense of URLs. In:
(Brewster S., Cawsey A., Cockton G., eds.:) Human-Computer Interaction – Interact’99
(Vol.2). The British Computer Society, 1999, 59-60.

[74] Stefik, M.: Introduction to knowledge systems, Morgan Kaufmann, 1995.

[75] Stevenson, M., Ciravegna, F.: Information extraction as a Semantic Web technology:
Requirements and promises. In: Workshop on Adaptive Text Extraction and Mining
(ATEM03) held with ECML/PKDD 2003, Cavtat 2003.

[76] Stuckenschmidt, H., van Harmelen, F.: Information Sharing on the Semantic Web.
Springer 2005.

[77] Stumme, G., Maedche, A.: FCA–Merge: A Bottom–Up Approach for Merging Ontolo-
gies. In: IJCAI ’01 - Proceedings of the 17th International Joint Conference on Artificial
Intelligence, Morgan Kaufmann 2001.
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[86] Svátek, V., Vacura, M.: Automatic Composition of Web Analysis Tools: Simulation
on Classification Templates. In: First International Workshop on Representation and
Analysis of Web Space (RAWS-05), online http://CEUR-WS.org/Vol-164.
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