
RDF-Based Retrieval of Information Extracted from Web
Product Catalogues

Ondřej Šváb, Martin Labský, Vojtěch Svátek
University of Economics, Prague, Department of Information and Knowledge Engineering

Winston Churchill Sq. 4, 130 67 Praha 3, Prague, Czech Republic

{xsvao06,labsky,svatek}@vse.cz

ABSTRACT
Extraction of relevant data from the raw source of HTML
pages poses specific requirements on their subsequent RDF
storage and retrieval. We describe an application of sta-
tistical information extraction technique (Hidden Markov
Models) on product catalogues, followed with conversion
of extracted data to RDF format and their structured re-
trieval. The domain-specific query interface, built on the top
of Sesame repository, offers a simple form of navigational re-
trieval. Integration of further web-analysis methods, within
the Rainbow architecture, is forthcoming.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval

General Terms
Algorithms, Experimentation, Languages

Keywords
RDF, Information extraction, Hidden Markov Models, Prod-
uct catalogues

1. INTRODUCTION
Retrieval-oriented tasks are among the best-developed in

semantic web applications, thanks to the ubiquity of web
search as well as to the maturity of database (or even XML)
querying. One variety of ‘semantic web’ retrieval aims at
annotations already expressed in semantic languages such
as RDF or OWL; these can be either dispersed in the WWW
space, which calls for co-operation with keyword-based search
engines [18], or collected in specialised repositories [2, 7].
Another ‘retrieval’ stream deals with extraction of informa-
tion (potential annotations) from raw web data, and focuses
on the level of individual documents or sites [9]. Although

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR ’04 Semantic Web Workshop, Sheffield, United Kingdom
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

each of the streams has been around for a while, interac-
tions among them are not always well investigated at the
moment.

In this paper, we present an ongoing study on coupling
(raw-web) information extraction with repository querying,
within a selected domain of discourse, namely bicycle sale
offers. This study is part of the Rainbow project1, which
aims at semantic analysis of web content and structure us-
ing a wide scope of knowledge-based methods implemented
as independent web services. Our aim is to build a domain-
specific semantic search engine capable of answering queries
e.g. about product names and prices, and pointing the user
to the original web sites. We believe that the RDF for-
mat is rather suitable as underlying representation for such
search engine. On the one hand, we need a format capable of
expressing structured data about diverse entities identified
on the web, and flexible enough to cope with the problem
of incomplete or inconsistent data, obviously arising when
automatically processing raw web resources. On the other
hand, we do not need the expressivity of a full ontology lan-
guage such as OWL, since we will rarely be able to extract
general axioms.

Section 2 is devoted to the problem of information extrac-
tion from product catalogues. We discuss the general fea-
tures of this task, describe our experimental data and their
acquisition process, and present three variations of statisti-
cal models used for the annotation subtask as well as the
(baseline) heuristic algorithm used for the ‘product-offer’
composition subtask. Section 3 addresses the processes of
storing and querying the results of information extraction
obtained in the previous step (and possibly by other meth-
ods), in the RDF format. We show the underlying RDF
Schema ontology, explain the choice of RDF repository and
query language, and describe the functionality of the end-
user query interface. Section 4 surveys some related work.
Finally, section 5 wraps up the paper and outlines prospects
for future work.

2. IE FROM PRODUCT CATALOGUES

2.1 Principles and Problems
Product catalogues are the heart of most company web-

sites. Although the number of companies relying on form-
based (sometimes even web-service-based) access to cata-
logues is slowly increasing, small and medium companies
typically find plain HTML pages (with navigational access)

1http://rainbow.vse.cz

as the most rational option. The information about product
names, properties and prices is structured to tables, lists or
paragraphs, which can be analysed by information extrac-
tion (IE) techniques. The best known IE projects focusing
on product information is CROSSMARC2.

Since the structure of catalogues is rather diverse from one
to another, and emphasis is put on attractive presentation
rather than on document logic, wrapper-based approaches
[15, 16], which only work well on database-like pages with
globally-regular structure, can hardly be applied. Likewise,
the catalogues do not contain continous, linguistically sound
text, which could be processed by traditional NLP tech-
niques such as complete parsing. As the most feasible op-
tion then remains IE relying on complex inductively trained
models, be they statistical or rule-based.

As typical in IE, we have to solve at least two constituent
problems: identification (annotation) of partial data items3

and their assignment (as ‘slots’) to instances of ‘product
offer’ class from an underlying ontology. As discussed below,
we so far used a trained statistical model for the former, and
a simple heuristic algorithm for the latter.

2.2 Experimental Data
As training and testing data for our extraction models, we

manually annotated 100 product catalogues randomly cho-
sen from bike shop websites in the UK. The documents were
picked from the Google Directory node Sports-Cycling-Bike
Shops-Europe-UK-England. Each document contains from
1 to 50 bike offers; there were more than 900 instances of
’bike offer’ in the data, overall. Manual annotation, carried
out by means of simple interactive tool made for this pur-
pose, covered different ’slots’ of ’bike offer’, distinguished by
different colours; see examples of annotated pages at Fig. 1.
The six most frequent slots are enumerated in the first col-
umn of Table 1. The labelled collection is available from
http://rainbow.vse.cz.

2.3 Annotation Using Hidden Markov Models
Hidden Markov Models (HMMs) are finite state machines

augmented with state transition probabilities and lexical
probability distributions for each state [21]. Text is mod-
elled as a sequence of tokens (in our case including words,
punctuation and formatting symbols). When applying an
HMM to text, the given sequence of tokens is assumed to
have been generated by that model. Provided some states
of the model are associated with semantic slots (to be filled
in with extracted text), we are interested in recovering the
most probable state sequence that would have generated our
text, and thereby obtaining its most probable semantic in-
terpretation. This task is effectively solved by the Viterbi
algorithm [21].

Before applying HMMs, we transformed each document
into a sequence of HTML block elements (e.g. paragraphs,
table cells) that directly contain potentially interesting data
(in our case, any text or images). Furthermore, certain inline
HTML tags were substituted with abstract tag classes, e.g.
<important> was used in place of <u><big>,
and several common web page patterns were identified with
manual rules and replaced using dedicated symbols, e.g.

2http://www.iit.demokritos.gr/skel/crossmarc
3They correspond or are analogous to traditional named
entities (cf. the MUC conferences, http://www.itl.nist.
gov/iaui/894.02/related_projects/muc).

Figure 1: Samples of annotated training data

<addtobasket> was used in place of forms that satisfied a
set of manually-defined rules.

Experiments were carried out using three different HMM
architectures. In all cases, we experimented with a trigram4

HMM instead of the commonly used bigram, seeking to
capture farther-reaching dependencies between slots. The
smoothing method applied on lexical probabilities was ab-
solute discounting similar to [3], while for transition proba-
bilities, linear interpolation was used.

The three architectures were as follows:

1. In the naive approach inspired by [19], we represented
each semantic slot with a single target state. Addi-
tionally, we defined a prefix and a suffix state for each
slot, responsible for modelling typical left and right
contexts. Finally we used a single (shared) background
state producing uninteresting data. The model topol-
ogy is shown at Fig. 25. In contrary to [19], where in-
dependent models were built for each slot, we created
a single model containing all slots in hope of captur-
ing the characteristic inter-slot positioning (e.g. price
typically following name).

We trained the naive model directly using counts from
labelled training data, as there always was a single
state sequence visible in each labelled document. Since
the prefix and suffix states for each slot were not di-
rectly labelled in the data, we treated k preceding and
k following tokens as being emitted by these states (in
our experiments k = 2).

2. In the word N-gram model, we incorporated knowl-
edge of internal structeres of a slot, namely, substi-
tuted the unigram lexical distributions of chosen states

4I.e., with transition probabilities conditioned by two previ-
ous labels.
5In the diagram, we omitted the edges for transitions be-
tween the shared background state and the states P’, T’
and S’, and did not include further P-T-S state triples at
all, for better readability.

Figure 2: Basic HMM architecture used

Table 1: 10-fold cross-validation results
Slot Recall Precision # instances
name 77.9 78.6 83.63 63.5 65.6 62.1 927
price 98.9 99.1 98.8 89.5 88.9 86.9 971
picture 69.0 89.6 359
speed 86.8 93.6 186
size 83.2 93.7 173
year 98.1 70.0 160

with n-gram lexical distributions. The state struc-
ture and transition distributions remained unchanged
compared to the naive model. In our experiments we
use word trigram6 models for selected slots, trained
from the particular slot’s training data and smoothed
via linear interpolation with weights obtained using
the EM algorithm described in [12]7. To obtain the
best state sequence s(1), ...s(n) for observed tokens
w1, ..., wn within this model, a simple modification to
the abovementioned Viterbi algorithm was designed.

3. The third approach we experimented with was pre-
viously used e.g. in [19]: we learnt an HMM sub-
model for each semantic slot having significant internal
structure. HMM submodels were learnt using the un-
supervised Baum-Welch algorithm [21] from the cor-
responding slot’s data, with the desired number of
states determined experimentally. Compared to the
naive model, the global trigram model structure was
the same, however, the learnt submodels were used in
place of the original singleton target states. In Figure 3
we show an example of a 3-state submodel trained for
the bike name slot. Only transitions with probabil-
ity higher than 0.05 and the most frequent emitted
words are shown. It is worth noting that the model
typically learnt bike company names in state 1, bike
model names in state 2, and generic properties such as
colours, sizes or brakes in state 3.

The results presented in Table 1 for the name and price
slots were obtained using the naive, word n-gram and sub-
model approaches respectively. The remaining slots do not
exhibit significant internal structure and currently we have
their results just for the naive model. Precision and recall

6I.e., with lexical probabilities conditioned by two previous
words, provided the two previous states are the same as the
current state.
7Note that we did not need to use the EM algorithm in the
naive approach, since the weights could be obtained directly
from training data.

Figure 3: 3-state submodel trained for bike name

was measured on a per-token basis. All results were ob-
tained using 10-fold cross-validation on the whole set of la-
belled 100 documents, with the presented values averaged.
Both non-naive approaches to modelling slot values how-
ever suffer from data sparseness, which probably causes the
degradation of precision in some cases. Some more details
about the different models used can be found in the working
paper [17].

2.4 Instance Composition
While the size of data was acceptable for training HMMs

for discovery of individual slots (such as bike name, price
or picture), we would need much more data to learn how to
compose them into whole instances of product offers—this
task that can be, in the IE terminology, characterised as
template extraction. Clearly, it is only this task that makes
the whole extraction effort sensible.

In the first approximation, we are using a rather toy al-
gorithm for grouping the labels produced by annotation.
The algorithm processes annotations sequentially and ex-
ploits information on required/optional slots and their al-
lowed cardinality, defined by means of a tiny ‘presentation’
ontology8. Essentially, a slot (i.e., annotated item) is added
to the currently assembled (bike) instance unless it would
cause inconsistency; otherwise, the current instance is saved
and a new instance created to accomodate this slot and the
following slots. Despite acceptable performance on error-
free, hand-annotated training data, where the algorithm
correctly groups about 90% of names and prices, this ‘base-
line’ approach achieves very poor results on automatically-
annotated data: on average, less than 50% of correspond-
ing names and prices are matched properly, often for triv-
ial reasons. We plan to replace the ‘toy’ algorithm with a
more sophisticated version, which would be reasonably ro-
bust on automatically annotated data. Namely, the most
critical problems of the ‘baseline’ algorithm are connected
with missing slots, multiple different references to a single
slot, and with transposed tables; for some of these, partial
solutions have recently been suggested by IE research (e.g.
[9, 10]) and could be reused.

3. STORING AND QUERYING THE RDF

3.1 RDF Schema for Bicycle Sale Domain
The HMM-based extractors discussed above are currently

(in the best case) able to yield instances of retail offers9,

8The ‘presentation’ ontology is correlated but neither iden-
tical nor subsumed by the RDF Schema mentioned below
(‘domain ontology’).
9We use this term instead of ‘bike offer’, so as to cover

typically consisting of name of a bike, its price, details on
its components (such as fork, frame, rear derailer etc.) and
its picture. This information thus has to be covered by the
underlying schema for the result repository. We are using
the RDF format, which gives us useful flexibility when deal-
ing with incomplete and imprecise data; hence, our data
schema has the form of RDF Schema [4] ontology. In ad-
dition to information produced by the HMM, the schema
also covers some information about the company that of-
fers the bicycle; this information is or will soon be extracted
other modules developed within the above-mentioned Rain-
bow system [22], e.g. a more linguistic-oriented (free-text)
analyser, META-tag analyser or URL analyser, as well as by
HMMs trained for a different sub-domain. Finally, we need
to represent metadata associated with the extracted facts,
such as ”Statement XY has certainty 0.75” or ”Statement
XY was produced by URL analysis module”.

Examples of information triples (in free-text form, to avoid
syntax issues) are ”Company X offers bike Y”. ”Bike Y has
name Rockmachine Tsunami”, ”Bike Y has fork Z”. ”Fork
Z has name Marzocchi Air”, ”Price of bike Y is 2500.”

The RDF schema of our domain is shown in graphical
form on Fig. 4 and 5 (decomposed for easier readability). It
uses four namespaces: bike dealing with bikes themselves,
comp dealing with (not necessarily ‘bike’) companies, pict
dealing with pictures on web pages, and meta dealing with
metadata on extracted statements. The central point of the
schema is the concept of RetailOffer. It corresponds to an
offer of BikeProduct (whole bike or component) by a Com-
pany; it is also associated with the Name under which and
Price for which it is offered, and URL of associated Pic-
ture. URI of particular RetailOffer corresponds to the URL
of catalogue item containing the offer10. BikeProduct is su-
perclass of all bike products. Note that BikeProduct and its
subclasses only have ‘types’ of products as their instances,
not individual physical entities. Such ‘type’ of product can
be offered for different prices and even under slightly differ-
ent names (associated with the given instance of RetailOffer)
and accompanied with different pictures, while BikeProduct
itself has a ’canonical’ name, specified e.g. by its manu-
facturer. Finally, our way of representing metadata for ex-
tracted information is based on reification and inspired by
[5]. The metadata should cover information on which analy-
sis module the statement was obtained from, or its certainty
factor. Metadata are grouped under an abstract class called
Meta.

3.2 RDF Repository and Query Language
As RDF repository we chose Sesame, developed by the

Dutch company Aduna (earlier Aidministrator), see http:

//sesame.aidministrator.nl, mainly because of its adher-
ence to current RDF recommendations by W3C and some
features of its original query language, SeRQL (especially,
optional path expressions, see below).

The inference-centric character of current RDF recom-
mendations is reflected by an inferencer in Sesame. By de-
fault, the basic set of RDFS inference rules is supported,
as defined in RDF Model-Theoretic Semantics (see http:

//www.w3.org/RDF). Basic rules can be insufficient for some
applications (e.g. dealing with transitive properties). For

separately-sold bike components.
10Typically the place from where the core information was
extracted.

pict:Picture�

bike:RetailOffer�
bike:hasPicture�

bike:hasPrice�

bike:hasName�

rdfs:Literal�

rdfs:Literal�

comp:Company�

comp:email�

comp:companyName�

comp:officePhone�

rdfs:Literal�

rdfs:Literal�

rdfs:Literal�

bike:fromWeb�

web:WebPage�

web:author�

web:contentLanguage�

rdfs:Literal�

web:contentType�

rdfs:Literal�

rdfs:Literal�

web:description�

rdfs:Literal�

web:keywords�

rdfs:Literal�

comp:hasWebPage�

web:WebPage�

bike:hasCompany�

comp:profileSentences�

rdfs:Literal�

comp:address�

blank node�

rdfs:Literal�
rdfs:Literal�

comp:city�
comp:postalCode�

comp:street�

rdfs:Literal�

comp:postalCode�

rdfs:Literal�

meta:Meta�

rdfs:Resource�

rdf:Statement�

meta:hasMeta�

meta:hasMeta�

rdfs:Literal�

rdfs:Literal�

rdfs:Literal�

meta:label�
meta:certainty�

meta:fromModule�

rdfs:Literal�

meta:date�

bike:size�

rdfs:Literal�

Figure 4: RDF schema of bicycle domain 1/2

this purpose, it is possible to define custom inference rules
and axiomatic triples in an external file.

Sesame also already proved scalable to larger quantities
of data [14]. A known weaker point of Sesame is limited
support for dynamic schema integration; since we deal with
a single RDF Schema fully under our control, this aspect is
not of central importance.

SeRQL [6] (”Sesame RDF Query Language”, pronounced
as ‘circle’) is a declarative query language over RDF and
RDF Schema. Its central part is the ‘select-from-where’11

construct similar to SQL. The ‘select’ part lists the variables
to be output. All of them must appear in the ‘from’ part,
which defines the part of RDF graph to be searched, by
means of path expressions. Finally, the ‘where’ part includes
an arbitrary selection pattern, and the ‘using’ part defines
the relevant namespaces.

Let us demonstrate the syntax and semantics of SeRQL
on a query from our application domain, which would read
in plain English:
Find all retail offers of bicycles whose name begins with
”Trek” and price is between 700 and 950. Output the bike
name, price and picture, as well as the website and name of
company that makes the given offer. Retrieve the retail offer
even if the URL of picture is not known.

select name, price, picture, web, company
from
{x} <serql:directType> {<bike:RetailOffer>};

<bike:hasPrice> {price};
[<bike:hasPicture> {picture}];
<bike:hasBikeProduct> {y},

{y} <bike:name> {name},
{x} <bike:hasCompany> {} <rdf:type> {<comp:Company>};

<comp:companyName> {company};

11There is an alternative ‘construct-from-where’ option,
which yields RDF triples rather than plain result tables.

bike:BikeProduct�

bike:RetailOffer�

bike:BikePart�

bike:TrekModel�

bike:MTBModel�

bike:FreeRideModel�

bike:RoadModel�

bike:BikeModel�

bike:Brakes�

bike:Fork�

bike:SuspensionFork�

bike:FrontDerailer�

bike:Wheel�

comp:Company�

bike:hasBikeProduct�

rdfs:subClassOf�

rdfs:subClassOf�

bike:hasCompany�

rdfs:subClassOf�

rdfs:subClassOf�

rdfs:subClassOf�

rdfs:subClassOf�
rdfs:subClassOf�

rdfs:subClassOf�

rdfs:subClassOf�

rdfs:subClassOf�

rdfs:subClassOf�

rdfs:subClassOf�

bike:name�

bike:partOfModel/bike:hasBikePart�

rdfs:Literal�

bike:Frame�

rdfs:subClassOf�

bike:Derailer�

rdfs:subClassOf�

bike:RearDerailer�

bike:year�
rdfs:Literal�

bike:speed�
rdfs:Literal�

Figure 5: RDF schema of bicycle domain 2/2

<comp:hasWebPage> {web}
where name like "Trek*"

and price >= "700"^^<xsd:double>
and price <= "950"^^<xsd:double>

using namespace
comp = <!http://rainbow.vse.cz/schema/company.rdfs#>,
bike = <!http://rainbow.vse.cz/schema/bikes.rdfs#>

The path expression from the example is graphically de-
picted at Fig. 6. In the ‘from’ part of sample query, all its
constituent triples are listed, taking advantage of SeRQL
shortcut notation: incomplete triples following the semi-
colon symbol refer to the subject from preceding triple (here,
the x variable). Note the brackets around the triple refer-
ring to picture: this part of graph is optional. Support for
optional path expressions was our major reason for choosing
SeRQL among three query languages applicable in Sesame
(see [24] for in-the-context comparison): there is obviously a
strong need for optional items when dealing with incomplete
data extracted from HTML pages.

3.3 HTML Query Interface
In order to make our RDF repository available for a ca-

sual user, we prepared a domain-specific HTML interface
with several SeRQL query templates. The templates shield
the user from the syntax of the query language, and offer a
simple form of navigational retrieval .

Template-based access to bike data relies on two-stage
querying. The template for initial query (specifying its ‘from’
part) is quite complicated, rich in optional path expressions;
its final shape is tuned by the user, who may refine the ‘se-

BikePro�
duct�

literal�companyName�

hasPicture�

Compan�
y�

RetailOf�
fer�

literal�

hasPrice�

hasCompany�

hasBikeProduct�

name� literal�

Picture�

Figure 6: RDF graph for example path expression

lect’ clause (variables), ‘from’ clause (optional or not), and
‘where’ clause (comparisons). The results of initial query
are the starting point for follow-up querying. The user can
then reformulate any of the two steps.

At Fig. 7 we see a screenshot of query interface after exe-
cution of both steps. The initial query (in the upmost pane)
corresponded to that from example above, and yielded (in
the middle pane) a collection of bicycle offers of desired make
and within the chosen price range. As follow-up query, the
user clicked on the ‘Find bike’ link within the ‘Trek 8000’ of-
fer made by Bicycle Doctor for 949.99 pounds (second in the
result list). The lowest pane then displayed both offers of
this bicycle present in the repository, the latter (by Comp-
ton Cycles) being more expensive but accompanied with a
picture. Analogously e.g. company information or enlarged
picture can be displayed.

The HTML interface is available at http://rainbow.vse.
cz:8000/sesame/. Since the interface was primarily de-
veloped for query demonstration purposes, the underlying
repository is currently filled with results obtained by ap-
plying automatic instance composition (section 2.4) on IE
training data rather than on the direct output of HMM-
based annotation. In this way, we obtained a reasonably
large and consistent fact base (currently, 838 instances from
88 pages). Version with fully automatically obtained data
(which are obviously sparser and less reliable) will be made
available soon.

4. RELATED WORK
As mentioned above, an advanced project dealing with

product information extraction is CROSSMARC [20]. It fo-
cuses on multi-linguality, and hence is more NLP-oriented
than our current study, which only addresses English-language
websites. Recently reported IE tools for semantic web are
S-CREAM [11] and MnM [25]. They pay significant at-
tention to efficient coupling of training data mark-up and
subsequent automated extraction of new data. Armadillo
[9] is probably the most advanced information extraction
tool explicitly addressing the semantic web standards such
as RDF (using the AKT triple store [1]). Its strong point is
bootstrapping, which minimises the human annotation ef-
fort.

Since our project is more-or-less at its beginning, we can-
not claim to overcome (or even match) the mentioned projects
in terms of performance of IE tools involved. Rather, we at-
tempt to bring new views on pipelining IE to subsequent
end-user retrieval of extracted results. We also focus on

Figure 7: HTML interface to bike-offer RDF repository

company websites, which are not frequently targetted by
academic IE research; presumably, they exhibit less trans-
parent logical structures and fewer data replications than
e.g. computer science department pages or bibliographies,
the domains most favoured by semantic-web IE applica-
tions. CROSSMARC is a rare exception, it however does
not seem to pay particular attention to presentation of ex-
tracted results in semantic web format. While most other
semantic-web IE approaches focus on rule-based methods,
we attempt to fine-tune the ‘alternative’ HMM paradigm
(previously proven succesful for many IE and speech recog-
nition settings) to fit to the problem of product catalogue
extraction. Finally, although IE bootstrapping (topical for
Armadillo) is not mentioned in the current paper, it was
addressed to some extent in a collateral project [13] (for
general business websites), the results of which are now also
being integrated with the current work.

5. CONCLUSIONS AND FUTURE WORK
We presented an application of information extraction

(IE) from web product catalogues, followed with storage
and retrieval of extracted results in RDF format. The IE
engine currently used is based on multiple variants of statis-

tical (Hidden Markov) models, and on a simple composition
algorithm. The query interface has an underlying Sesame
repository and comprises domain-specific query templates in
SeRQL language, allowing for navigational querying.

The most urgent further work from the IE viewpoint re-
gards enhancement of the instance composition method. We
are also going to combine the results of product-catalogue
IE with results obtained by other web-analysis methods de-
veloped in the Rainbow project: a control application is
currently being design, which calls different tools (as web
services) and integrates their results into the same RDF
repository. In the more distant future, we would like to pro-
ceed to on-the-fly knowledge-based integration, which would
take full advantage of the flexibility of RDF. We would also
like to compare the performance of statistical IE methods
with rule-based ones (such as LP2 [8]) on the product cat-
alogue domain. Another problem is that of portability to
another (retail-sale) domain: apart of re-training the ex-
traction model, the upper level of IE has to be modified as
well, ideally, with maximal involvement of domain ontolo-
gies (provided they exist). The problem of (possibly semi-
automatic) transformation between domain ontologies and
presentation ontologies is worth investigating. Finally, we
plan to provide support for on-the-fly application construc-

tion from available web services and its user-controlled exe-
cution (similar to that of Armadillo [9]), taking as starting
point the conceptual framework for web analysis introduced
in [23].

6. ACKNOWLEDGEMENTS
The authors thank Jeen Broekstra and Martin Kavalec for

assistance in setting up the Sesame repository. The research
is partially supported by grant no.201/03/1318 of the Czech
Science Foundation, “Intelligent analysis of the WWW con-
tent and structure.”

7. REFERENCES
[1] AKT Triplestore, http://triplestore.aktors.org

[2] S. Alexaki, V. Christophides, G. Karvounarakis, D.
Plexousakis, K. Tolle. The ICS-FORTH RDFSuite:
Managing Voluminous RDF Description Bases.
2ndInternational Workshop on the Semantic Web, in
conjunction with WWW10, Hongkong, 2001.

[3] V. Borkar, K. Deshmukh, S. Sarawagi. Automatic
segmentation of text into structured records. SIGMOD
Conference, 2001.

[4] D. Brickley, R.V. Guha. RDF Vocabulary Description
Language 1.0: RDF Schema. W3C Recommendation,
World-Wide Web Consortium, Feb. 2004

[5] J. Broekstra, M. Ehrig, P. Haase, F. van Harmelen, A.
Kampman, M. Sabou, R. Siebes, S. Staab, H.
Stuckenschmidt, C. Tempich. A Metadata Model for
Semantics-Based Peer-to-Peer Systems. In: Proceedings
of the WWW’03 Workshop on Semantics in
Peer-to-Peer and Grid Computing, Budapest, 2003.

[6] J. Broekstra, A. Kampman. User Guide for Sesame.
http:

//sesame.aidministrator.nl/publications/users/

[7] J. Broekstra, A. Kampman, F. van Harmelen. Sesame:
An Architecture for Storing and Querying RDF and
RDF Schema. In: Proceedings of the First
International Semantic Web Conference (ISWC 2002),
Sardinia, Italy, June 9-12 2002, 54-68. Springer-Verlag
Lecture Notes in Computer Science (LNCS) no. 2342.

[8] F. Ciravegna. LP2 – an Adaptive Algorithm for
Information Extraction from Web-related Texts. Proc.
of the IJCAI-2001 Workshop on Adaptive Text
Extraction and Mining held in conjunction with the
17th International Conference on Artificial Intelligence
(IJCAI-01), August, 2001.

[9] F. Ciravegna, S. Chapman, A. Dingli, Y. Wilks:
Learning to Harvest Information for the Semantic Web.
In: Proceedings of the 1st European Semantic Web
Symposium (ESWS-04), Heraklion, Greece, 2004.

[10] D. W. Embley, C. Tao, S.W. Liddle. Automatically
Extracting Ontologically Specified Data from HTML
Tables of Unknown Structure. ER 2002: 322-337.

[11] S. Handschuh, S. Staab, F. Ciravegna. S-CREAM –
Semi-automatic CREAtion of Metadata. In:
Proceedings EKAW-02, Springer Verlag 2002.

[12] F. Jelinek. Statistical Methods for Speech Recognition.
The MIT Press, Cambridge, Massachusetts, 1997.

[13] M. Kavalec, V. Svátek. Information Extraction and
Ontology Learning Guided by Web Directory. In: ECAI
Workshop on NLP and ML for ontology engineering.
Lyon 2002.

[14] A. Kiryakov, B. Popov, D. Manov. Semantic Indexing
and Retrieval. Proceedings of the SIGIR 2003 Semantic
Web Workshop, Toronto, Canada, 2003.

[15] C.A. Knoblock, S. Minton, J.L. Ambite, N. Ashish,
P.J. Modi, I. Muslea, A.G. Philpot, S.Tejada. Modeling
Web Sources for Information Integration. In: Proc. of
the 15th National Conference on Artificial Intelligence
(AAAI-98), Madison, WI, 1998.

[16] N. Kushmerick, D. S. Weld, R. Doorenbos. Wrapper
Induction for Information Extraction. In: Intl. Joint
Conference on Artificial Intelligence (IJCAI), 1997.

[17] M. Labský, V. Svátek. Information Extraction from
Web Product Catalogues. Working paper, 2004, online
at http://rainbow.vse.cz/hmm-working.pdf.

[18] J. Mayfield, T. Finin. Information Retrieval on the
Semantic Web: Integrating inference and retrieval.
Proceedings of the SIGIR 2003 Semantic Web
Workshop, Toronto, Canada, 2003.

[19] A. McCallum, D. Freitag. Information extraction with
HMM structures learned by stochastic optimization.
Proceedings of the 17-th National Conference on
Artificial Intelligence, 2000.

[20] M.T. Pazienza, A. Stellato, M. Vindigni. Combining
ontological knowledge and wrapper induction
techniques into an e-retail system. Proceedings of the
International Workshop on Adaptive Text Extraction
and Mining held in conjunction with the 14th
European Conference on Machine Learning and the 7th
European Conference on Principles and Practice of
Knowledge Discovery in Databases, Cavtat-Dubrovnik,
Croatia, September 22, 2003.

[21] L.R. Rabiner. A tutorial on hidden Markov models
and selected applications in speech recognition.
Proceedings of the IEEE, 77(2), 1989.

[22] V. Svátek, J. Kosek, M. Labský, J. Bráza, M. Kavalec,
M. Vacura, V. Vávra, V. Snášel. Rainbow - Multiway
Semantic Semantic Analysis of Websites. In: 2nd

DEXA Int’l Workshop on Web Semantics, Prague,
IEEE Computer Society Press 2003.

[23] V. Svátek, M. Labský, M. Vacura. Knowledge
Modelling for Deductive Web Mining. Accepted for
EKAW 2004.

[24] O. Šváb, V. Svátek, M. Kavalec, M. Labský. Querying
the RDF: Small Case Study in the Bicycle Sale
Domain. In: Workshop on Databases, Texts,
Specifications and Objects (DATESO’04), TU Ostrava
2004, online at http://www.ceur-ws.org/Vol-98.

[25] M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni,
A. Stutt, F. Ciravegna. MnM: Ontology Driven
Semi-Automatic and Automatic Support for Semantic
Markup. The 13th International Conference on
Knowledge Engineering and Management (EKAW
2002), ed Gomez-Perez, A., Springer Verlag, 2002.

